
CSCI 334: 
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 16: Intro to Scala

Announcements

HW7 sent out as promised. See course webpage.

Announcements

No class on Tuesday, April 17. Squeak demo



Scala!

The Programming World Today
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• Functional programming makes it easy to add operations. 

• OO programming makes it easy to add data. 

• Scala: Why not have both functional and OO?

REPL

$ scala 
Welcome to Scala 2.12.5 (Java HotSpot(TM) 64-Bit Server VM, Java 
1.8.0_144). 
Type in expressions for evaluation. Or try :help. 

scala>  

scala> "hello world!" 
res0: String = hello world! 

scala> :quit



Semicolons are optional

scala> println("Hello world!") 
Hello world! 

scala> println("Hello world!"); 
Hello world!

Scala is object-oriented

scala> class Apple 
defined class Apple 

scala> val a = new Apple 
a: Apple = Apple@31b7d869

Everything is an object!

Scala is functional

scala> val xs = List(1,2,3,4,5) 

scala> xs.map(e => e + 1) 
res0: List[Int] = List(2, 3, 4, 5, 6) 

scala> xs.map(_ + 1) 
res1: List[Int] = List(2, 3, 4, 5, 6)

Scala is functional

scala> xs.foldLeft (0)((acc,x) => acc + x) 
res0: Int = 15 

scala> xs.zip(xs) 
res1: List[(Int, Int)] = List((1,1), (2,2), (3,3), (4,4), (5,5)) 

scala> val m = xs.groupBy(x => x > 3) 
m: scala.collection.immutable.Map[Boolean,List[Int]] = Map(false -> 
List(1, 2, 3), true -> List(4, 5)) 

scala> m(false) 
res2: List[Int] = List(1, 2, 3) 

scala> m(true) 
res3: List[Int] = List(4, 5) 

scala> m(true).head 
res4: Int = 4 

Supports many of your favorite HOFs (and then some!)



Scala is functional

scala> class Thing { 
     |   val i = 1 
     |   def increment() { i += 1 } 
     | } 
<console>:13: error: value += is not a member of Int 
  Expression does not convert to assignment because receiver is not 
assignable. 
         def increment() { i += 1 } 
                             ^

Values are immutable

But Scala is also pragmatic

scala> class Thing { 
     |   var i = 1 
     |   def increment() { i += 1 } 
     | } 
defined class Thing 

scala> val t = new Thing 
t: Thing = Thing@28d728f1 

scala> t.increment 

scala> t.i 
res0: Int = 2

You can also use mutable variables

Scala has great documentation Ordinary Functions

scala> def succ(x: Int) = x + 1; 
succ: (x: Int)Int 

scala> succ(12); 
res0: Int = 13



Lambda (Anonymous) Functions

scala> val succ = (x : Int) => x + 1; 
succ: Int => Int = $$Lambda$1514/322302398@2fe12b04 

scala> succ(3) 
res0: Int = 4

Recursive Functions

scala> def fact(n: Int) : Int = 
     |   if (n == 0) 1 else n * fact(n-1) 
fact: (n: Int)Int 

scala> fact(4) 
res0: Int = 24

Scala is built on top of Java

scala> val sb = new StringBuilder 
sb: StringBuilder = 

scala> sb.append("hello") 
res0: StringBuilder = hello 

scala> sb.append("world") 
res1: StringBuilder = helloworld 

scala> println(sb.toString) 
helloworld

In general, Java classes and methods are available.

Scala has a rich set of built-in types



Scala has a rich set of built-in types

scala> true 
res0: Boolean = true 

scala> false 
res1: Boolean = false 

scala> 3 
res2: Int = 3 

scala> 43.3 
res3: Double = 43.3 

Most types fully compatible with Java

scala> "moo" 
res8: java.lang.String = moo 

scala> val str = "cow" 
str: java.lang.String = cow 

scala> str.length() 
res9: Int = 3 

scala> str.toUpperCase() 
res10: java.lang.String = COW 

Lightweight tuple syntax (like SML!)

scala> (1,"hello") 
res0: (Int, String) = (1,hello)

You can abbrev. no-param calls

scala> str.length() 
res9: Int = 3 

scala> str.toUpperCase() 
res10: java.lang.String = COW 

scala> str.toUpperCase 
res11: java.lang.String = COW 

scala> str toUpperCase 
res12: java.lang.String = COW



Scala has pattern matching

scala> val thing : Option[Int] = Some(3) 
thing: Option[Int] = Some(3) 

scala> thing match { 
     |   case None => println("It was nothing") 
     |   case Some(i) => println(i) 
     | } 
3

Scala has generics

scala> def foo[T](data: T) { println(data) } 
foo: [T](data: T)Unit 

scala> foo(1) 
1 

scala> foo("hello") 
hello 

scala> foo((1,"hello")) 
(1,hello) 

Scala has “lighter” syntax than Java
Scala programs can just be “scripts” 

No need for “boilerplate”.

println(“Helloworld!”)

hello.scala

$ scala hello.scala 
Helloworld!

Also supports traditional structure

Scala programs can also be compiled just like Java

object App { 
  def main(args: Array[String]) { 
    println("Helloworld!") 
  } 
}

$ scalac hello.scala 
$ scala App 
Helloworld!



Doesn’t have Java’s restrictive one class per file rule

class Apple { 
  def whatami = "apple" 
} 

object App { 
  def main(args: Array[String]){ 
    val apple = new Apple 
    println(apple.whatami) 
  } 
}

$ scalac cool.scala 
$ scala App 
apple

Scala doesn’t care where you put classes Scala doesn’t care where you put classes

You can even nest classes arbitrarily

class Apple { 
  def whatami = "apple" 
} 

object App { 
  class Orange { 
    def whatami = "orange" 
  } 

  def main(args: Array[String]){ 
    val apple = new Apple 
    val orange = new Orange 
    println(apple.whatami + " " + orange.whatami) 
  } 
}

$ scalac hello.scala 
$ scala App 
apple orange

Scala has powerful facilities for abstraction
trait Fruit { 
  def name: String 
} 

trait Box { 
  def fruit: Fruit 
  def contains(aFruit: Fruit) = fruit == aFruit 
} 

trait Color { 
  def color: String 
} 

class Apple extends Fruit { 
  def name = "Apple" 
} 

class AppleBox(apple: Apple) extends Box with Color { 
  def fruit = apple 
  def color = “brown” 
}

Anonymous classes

scala> val apple = new Apple 
apple: Apple = Apple@4f8659d0 

scala> val ab = new Box { def fruit = apple } 
ab: Box{def fruit: Apple} = $anon$1@1c011855



We can even “refine” types

trait Box[F <: Fruit] { 
  def fruit: F 
  def contains(aFruit: Fruit) = fruit == aFruit 
}

F must be a subtype of Fruit

We can even “refine” types

trait Box[F <: Fruit] { 
  def fruit: F 
  def contains(aFruit: Fruit) = fruit == aFruit 
}

val box: Box[Fruit] = new Box[Apple] { def fruit = apple }

F must be a subtype of Fruit

But now this doesn’t work.  Why?

Box is not “covariant”

F <: Fruit

What we want:

This is not true in Scala by default 

(but the fix is simple)

Box[F] <: Box[Fruit]

trait Box[+F <: Fruit] { 
  def fruit: F 
  def contains(aFruit: Fruit) = fruit == aFruit 
}

val box: Box[Fruit] = new Box[Apple] { def fruit = apple }


