CSCl 334:
Principles of Programming Languages

| ecture 16: Intro to Scala

Instructor: Dan Barowy
Williams

Announcements

H\W7 sent out as promised. See course webpage.

Announcements

No class on Tuesday, April 17.

Squeak demo

Scala!

The Programming World Today

“Tower of Babel"

OO0 vs Functional Tradeoff

Operation Doctor Nurse Orderly

Print Print Doctor Print Nurse Print Orderly

Pay Pay Doctor Pay Nurse Pay Orderly

- Functional programming makes it easy to add operations.
- OO0 programming makes it easy to add data.
+ Scala: Why not have both functional and OO?

REPL

$ scala
Welcome to Scala 2.12.5 (Java HotSpot (TM) 64-Bit Server VM, Java

1.8.0 144).
Type in expressions for evaluation. Or try :help.

scala>

scala> "hello world!"
resO: String = hello world!

scala> :quit

Semicolons are optional

scala> println("Hello world!")
Hello world!

scala> println("Hello world!");
Hello world!

Scala is object-oriented

scala> class Apple
defined class Apple

scala> val a = new Apple
a: Apple = Apple@31b7d869

Everything is an object!

Scala is functional

scala> val xs = List(1,2,3,4,5)

scala> xs.map(e => e + 1)
resO: List[Int] = List(2, 3, 4, 5, 6)

scala> xs.map(_ + 1)
resl: List[Int] = List(2, 3, 4, 5, 6)

Scala is functional

Supports many of your favorite HOFs (and then some!)

scala> xs.foldLeft (0) ((acc,x) => acc + Xx)
resO: Int = 15

scala> xs.zip(xs)
resl: List[(Int, Int)] = List((1,1), (2,2), (3,3), (4,4), (5,5)

scala> val m = xs.groupBy(x => x > 3)
m: scala.collection.immutable.Map[Boolean,List[Int]] = Map(false ->
List(1l, 2, 3), true -> List (4, 5))

scala> m(false)
res2: List[Int] = List (1, 2, 3)

scala> m(true)
res3: List[Int]

List (4, 5)

scala> m(true) .head
res4: Int = 4

Scala is functional

Values are immutable

scala> class Thing {
| val i = 1
| def increment () { i += 1 }
I}
<console>:13: error: value += is not a member of Int
Expression does not convert to assignment because receiver is not

assignable.
def increment () { i += 1 }

~

But Scala is also pragmatic

You can also use mutable variables

scala> class Thing {
| var i = 1
| def increment () { i += 1 }

|}
defined class Thing

scala> val t = new Thing
t: Thing = Thing@28d728f1

scala> t.increment

scala> t.i
resO: Int = 2

Scala has great documentation

rary 2125
scala.collection.immutable REZED
. root
Llst Companion object List
scala
.) . collection
sealed abstract class List[+A] extends AbstractSeq[A] with LinearSeq[A] with Product
with GenericTraversableTemplate[A, List] with LinearSeqOptimized[A, List[A]] with immutable
Serializable o:
AbstractMa
Aclass for immutable linked lists representing ordered collections of elements of type A. © i
i - . @Ositset
“This class comes with two implementing case classes scala.Nil and scala.:: that implement the abstract members isEmpty,
head and tail. (B
. - : © O Hashhap
“This class is optimal for last-in-irst-out (LIFO), stack-like access patterns. If you need another access pattern, for example,
random access or FIFO, consider using a collection more suited to this than List. © OHashset
Note: Despite being an immutable collection, the implementation uses mutable state internally during construction. These © @ Indexedseq
state changes are invisible in single-threaded code but can lead to race conditions in some multi-threaded scenarios. The ©O1nthap
state of a new collection instance may not have been "published" (in the sense of the Java Memory Model specification), so @0 teraste
that an unsynchronized non-volatile read from another thread may observe the object in an invalid state (see)
scala/bug#7838 for details). Note that such a read is not guaranteed to ever see the written object at all, and should © 0 tincarsed
therefore not be sed, regardless of this issue. The easiest workaround is to exchange values between threads through a Q0List
volatile var. ©OListiap
Performance @0
N " : n . © O Longhap
Time: List has O(1) prepend and head/tail access. Most other operations are O(n) on the number of elements in the list. This
includes the index-based lookup of elements, length, append and reverse. OOvap
Space: List implements structural sharing of the tail list. This means that many operations are either zero- or constant- (imite
memory cost. @ MapProxy
Nil
val mainlist = List(3, 2, 1) i
val with4 4 :: mainlist // re-uses mainlList, costs one :: instance © O NunericRange
val with42 = 42 :: mainlist // also re-uses mainList, cost one :: instance o ©0ragedse
val shorter = mainList.tail // costs nothing as it uses the same 2::1::Nil instances as mainLi
© Oqueue

Ordinary Functions

scala> def succ(x: Int) = x + 1;
succ: (x: Int)Int

scala> succ(l2);
resO: Int = 13

Lambda (Anonymous) Functions

scala> val succ = (x : Int) => x + 1;
succ: Int => Int = $$Lambda$1514/322302398@2fel2b04

scala> succ (3)
resO: Int = 4

Recursive Functions

scala> def fact(n: Int) : Int =
| if (n == 0) 1 else n * fact(n-1)
fact: (n: Int)Int

scala> fact (4)
resO: Int = 24

Scala is built on top of Java

In general, Java classes and methods are available.

scala> val sb = new StringBuilder
sb: StringBuilder =

scala> sb.append("hello")
resO: StringBuilder = hello

scala> sb.append("world")
resl: StringBuilder = helloworld

scala> println(sb.toString)
helloworld

Scala has a rich set of built-in types

scala.AnyRef
scala AnyVal (javalang.Object)

scala.ScalaObject

scala.Unit
scala.Boolean

scala.Char

scala.lterable

scala.Symbol
o

-+ (other Scala classes). ..

i
\
AN
~+ scalaByte scala.AllRef

scala All

java.lang String

- (other Java classes). ..

/

Scala has arich set of built-in types

scala> true
resO: Boolean = true

scala> false
resl: Boolean = false

scala> 3
res2: Int = 3

scala> 43.3
res3: Double = 43.3

Most types fully compatible with Java

scala> "moo"
res8: java.lang.String = moo

scala> val str = "cow"
str: java.lang.String = cow

scala> str.length()
res9: Int = 3

scala> str.toUpperCase ()
resl0: java.lang.String = COW

Lightweight tuple syntax (like SML)

scala> (1,"hello")
resO: (Int, String) = (1,hello)

You can abbrev. no-param calls

scala> str.length()
res9: Int = 3

scala> str.toUpperCase ()
resl0: java.lang.String = COW

scala> str.toUpperCase
resll: java.lang.String = COW

scala> str toUpperCase
resl2: java.lang.String = COW

Scala has pattern matching

scala> val thing : Option[Int] = Some (3)
thing: Option[Int] = Some (3)

scala> thing match {
| case None => println ("It was nothing")
| case Some (i) => println(i)

[}

Scala has generics

scala> def fool[T] (data: T) { println(data) }
foo: [T] (data: T)Unit

scala> foo (1)
1

scala> foo("hello")
hello

scala> foo((1l,"hello"))
(1,hello)

Scala has “lighter” syntax than Java
Scala programs can just be “scripts”

No need for “boilerplate”

$ scala hello.scala
Helloworld!

println (“Helloworld!”)

hello.scala

Also supports traditional structure

Scala programs can also be compiled just like Java

object App {
def main(args: Array[String]) {
println("Helloworld!")
}
}

$ scalac hello.scala
$ scala App
Helloworld!

Scala doesn't care where you put classes

Doesn't have Java's restrictive one class per file rule

class Apple {
def whatami = "apple"

}

object App {
def main(args: Array[String]) {
val apple = new Apple
println (apple.whatami)
}
}

$ scalac cool.scala
$ scala App
apple

Scala doesn't care where you put classes

You can even nest classes arbitrarily

class Apple {
def whatami = "apple"
}

object App {
class Orange {
def whatami = "orange"

}

def main(args: Array[String]) {
val apple = new Apple
val orange = new Orange
println(apple.whatami + "™ " + orange.whatami)
}
}

$ scalac hello.scala
$ scala App
apple orange

Scala has powerful facilities for abstraction

trait Fruit {
def name: String

}

trait Box {
def fruit: Fruit
def contains(aFruit: Fruit) = fruit == aFruit

trait Color {
def color: String

class Apple extends Fruit {
def name = "Apple"

class AppleBox (apple: Apple) extends Box with Color ({
def fruit = apple
def color = “brown”

Anonymous classes

scala> val apple = new Apple
apple: Apple = Apple@4£8659d0

scala> val ab = new Box { def fruit = apple }
ab: Box{def fruit: Apple} = $anon$1@1c011855

We can even ‘refine’ types

F must be a subtype of Fruit

trait Box[F <: Fruit] {
def fruit: F
def contains (aFruit: Fruit) = fruit == aFruit

}

We can even ‘refine’ types

F must be a subtype of Fruit

trait Box[F <: Fruit] {
def fruit: F
def contains(aFruit: Fruit) = fruit == aFruit

}

But now this doesn't work. \Why?

val box: Box[Fruit] = new Box[Apple] { def fruit = apple }

Box is not ‘covariant”

What we want:

F <: Fruit

Box[F] <: Box[Fruit]

This is not true in Scala by default

(but the fix is simple)

trait Box[+F <: Fruit] {
def fruit: F
def contains(aFruit: Fruit) = fruit == aFruit

}

val box: Box[Fruit] = new Box[Apple] { def fruit =

apple }

