
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 16: Intro to Scala

Announcements

HW7 sent out as promised. See course webpage.

Announcements

No class on Tuesday, April 17. Squeak demo

Scala!

The Programming World Today

“Tower of Babel”

OO vs Functional Tradeoff

Operation Doctor Nurse Orderly

Print

Pay

Print Doctor Print Nurse Print Orderly

Pay Doctor Pay Nurse Pay Orderly

• Functional programming makes it easy to add operations.

• OO programming makes it easy to add data.

• Scala: Why not have both functional and OO?

REPL

$ scala
Welcome to Scala 2.12.5 (Java HotSpot(TM) 64-Bit Server VM, Java
1.8.0_144).
Type in expressions for evaluation. Or try :help.

scala>

scala> "hello world!"
res0: String = hello world!

scala> :quit

Semicolons are optional

scala> println("Hello world!")
Hello world!

scala> println("Hello world!");
Hello world!

Scala is object-oriented

scala> class Apple
defined class Apple

scala> val a = new Apple
a: Apple = Apple@31b7d869

Everything is an object!

Scala is functional

scala> val xs = List(1,2,3,4,5)

scala> xs.map(e => e + 1)
res0: List[Int] = List(2, 3, 4, 5, 6)

scala> xs.map(_ + 1)
res1: List[Int] = List(2, 3, 4, 5, 6)

Scala is functional

scala> xs.foldLeft (0)((acc,x) => acc + x)
res0: Int = 15

scala> xs.zip(xs)
res1: List[(Int, Int)] = List((1,1), (2,2), (3,3), (4,4), (5,5))

scala> val m = xs.groupBy(x => x > 3)
m: scala.collection.immutable.Map[Boolean,List[Int]] = Map(false ->
List(1, 2, 3), true -> List(4, 5))

scala> m(false)
res2: List[Int] = List(1, 2, 3)

scala> m(true)
res3: List[Int] = List(4, 5)

scala> m(true).head
res4: Int = 4

Supports many of your favorite HOFs (and then some!)

Scala is functional

scala> class Thing {
 | val i = 1
 | def increment() { i += 1 }
 | }
<console>:13: error: value += is not a member of Int
 Expression does not convert to assignment because receiver is not
assignable.
 def increment() { i += 1 }
 ^

Values are immutable

But Scala is also pragmatic

scala> class Thing {
 | var i = 1
 | def increment() { i += 1 }
 | }
defined class Thing

scala> val t = new Thing
t: Thing = Thing@28d728f1

scala> t.increment

scala> t.i
res0: Int = 2

You can also use mutable variables

Scala has great documentation Ordinary Functions

scala> def succ(x: Int) = x + 1;
succ: (x: Int)Int

scala> succ(12);
res0: Int = 13

Lambda (Anonymous) Functions

scala> val succ = (x : Int) => x + 1;
succ: Int => Int = $$Lambda$1514/322302398@2fe12b04

scala> succ(3)
res0: Int = 4

Recursive Functions

scala> def fact(n: Int) : Int =
 | if (n == 0) 1 else n * fact(n-1)
fact: (n: Int)Int

scala> fact(4)
res0: Int = 24

Scala is built on top of Java

scala> val sb = new StringBuilder
sb: StringBuilder =

scala> sb.append("hello")
res0: StringBuilder = hello

scala> sb.append("world")
res1: StringBuilder = helloworld

scala> println(sb.toString)
helloworld

In general, Java classes and methods are available.

Scala has a rich set of built-in types

Scala has a rich set of built-in types

scala> true
res0: Boolean = true

scala> false
res1: Boolean = false

scala> 3
res2: Int = 3

scala> 43.3
res3: Double = 43.3

Most types fully compatible with Java

scala> "moo"
res8: java.lang.String = moo

scala> val str = "cow"
str: java.lang.String = cow

scala> str.length()
res9: Int = 3

scala> str.toUpperCase()
res10: java.lang.String = COW

Lightweight tuple syntax (like SML!)

scala> (1,"hello")
res0: (Int, String) = (1,hello)

You can abbrev. no-param calls

scala> str.length()
res9: Int = 3

scala> str.toUpperCase()
res10: java.lang.String = COW

scala> str.toUpperCase
res11: java.lang.String = COW

scala> str toUpperCase
res12: java.lang.String = COW

Scala has pattern matching

scala> val thing : Option[Int] = Some(3)
thing: Option[Int] = Some(3)

scala> thing match {
 | case None => println("It was nothing")
 | case Some(i) => println(i)
 | }
3

Scala has generics

scala> def foo[T](data: T) { println(data) }
foo: [T](data: T)Unit

scala> foo(1)
1

scala> foo("hello")
hello

scala> foo((1,"hello"))
(1,hello)

Scala has “lighter” syntax than Java
Scala programs can just be “scripts”

No need for “boilerplate”.

println(“Helloworld!”)

hello.scala

$ scala hello.scala
Helloworld!

Also supports traditional structure

Scala programs can also be compiled just like Java

object App {
 def main(args: Array[String]) {
 println("Helloworld!")
 }
}

$ scalac hello.scala
$ scala App
Helloworld!

Doesn’t have Java’s restrictive one class per file rule

class Apple {
 def whatami = "apple"
}

object App {
 def main(args: Array[String]){
 val apple = new Apple
 println(apple.whatami)
 }
}

$ scalac cool.scala
$ scala App
apple

Scala doesn’t care where you put classes Scala doesn’t care where you put classes

You can even nest classes arbitrarily

class Apple {
 def whatami = "apple"
}

object App {
 class Orange {
 def whatami = "orange"
 }

 def main(args: Array[String]){
 val apple = new Apple
 val orange = new Orange
 println(apple.whatami + " " + orange.whatami)
 }
}

$ scalac hello.scala
$ scala App
apple orange

Scala has powerful facilities for abstraction
trait Fruit {
 def name: String
}

trait Box {
 def fruit: Fruit
 def contains(aFruit: Fruit) = fruit == aFruit
}

trait Color {
 def color: String
}

class Apple extends Fruit {
 def name = "Apple"
}

class AppleBox(apple: Apple) extends Box with Color {
 def fruit = apple
 def color = “brown”
}

Anonymous classes

scala> val apple = new Apple
apple: Apple = Apple@4f8659d0

scala> val ab = new Box { def fruit = apple }
ab: Box{def fruit: Apple} = $anon$1@1c011855

We can even “refine” types

trait Box[F <: Fruit] {
 def fruit: F
 def contains(aFruit: Fruit) = fruit == aFruit
}

F must be a subtype of Fruit

We can even “refine” types

trait Box[F <: Fruit] {
 def fruit: F
 def contains(aFruit: Fruit) = fruit == aFruit
}

val box: Box[Fruit] = new Box[Apple] { def fruit = apple }

F must be a subtype of Fruit

But now this doesn’t work. Why?

Box is not “covariant”

F <: Fruit

What we want:

This is not true in Scala by default

(but the fix is simple)

Box[F] <: Box[Fruit]

trait Box[+F <: Fruit] {
 def fruit: F
 def contains(aFruit: Fruit) = fruit == aFruit
}

val box: Box[Fruit] = new Box[Apple] { def fruit = apple }

