
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 15: Object-Oriented Programming

Announcements

Will release HW7 later today.

Object-Oriented Programming

• OOP is both a language design philosophy and a way

of working (OO design).

• OOP is possibly the most impactful development in

the history of programming languages.

What OOP is Not

• Many, many instructors introduce OOP as a way of

naturally simulating the world.

• While there is a natural affinity between real-world

modeling and OOP, this misses the point entirely.

What OOP is
• Object-oriented programming is actually about scalability.

• Scalability in codebase size was the original motivation.

• But OO philosophy also has had a big effect on the

scalability of programming teams.

small programs big programs

small teams

big teams

History

• First language recognizable as OO:

Simula-67.

• Developed by Kristen Nygaard and others

at the Norwegian Computing Center.

• Grew out of frustrations using ALGOL.

• Original plan was to add an “object” library,

inspired by C.A.R. Hoare’s “record classes”.

• It was eventually realized that objects were

a fundamentally different way of

structuring a program; Simula became its

own language.

History

• First mainstream success: Smalltalk

• Developed by Alan Kay, Dan Ingalls, and Adele Goldberg at

Xerox PARC and later Apple Computer.

• Used to implement major components of the groundbreaking

Xerox Alto computer.

• Highly influential. E.g., C++, Java, Ruby, etc.

History

• https://www.youtube.com/watch?v=Ao9W93OxQ7U

History
And they showed me really three things. But I was so

blinded by the first one I didn't even really see the other

two. One of the things they showed me

was object orienting programming

they showed me that but I didn't even

see that. The other one they showed

me was a networked computer

system… they had over a hundred Alto

computers all networked using email

etc., etc. I didn't even see that. I was so

blinded by the first thing they showed

me which was the graphical user interface…

within you know ten minutes it was obvious to me that all

computers would work like this some day.

History

OK, really, what is OO?

Object-oriented programming is composed primarily

of four key language features:

1. Abstraction

2. Dynamic dispatch

3. Subtyping

4. Inheritance

Abstraction
• Similar concept to abstraction in the lambda calculus; 

a way of scoping bindings.

• More concretely: a way of “encapsulating” or hiding

data.

• This data structure is called an object.

• Objects are instantiated from a template called a class.

• You are already familiar with this idea from Java.
class Circle {
 private int centerX = 0;
 private int centerY = 0;
 private int radius = 1;
 ...
}

Abstraction
class Circle {
 private int centerX = 0;
 private int centerY = 0;
 private int radius = 1;
 ...
}

• Users of this code cannot access field members by

default.

Circle c = new Circle();
System.out.println(c.centerX);

Main.java:4: error: centerX has private access in Circle
 System.out.println(c.centerX);
 ^
1 error

Abstraction

Object subclass: ‘Circle’
 instanceVariableNames: ‘centerX centerY radius’

• In Smalltalk, data stored inside an object (an “instance

variable”) is “private” to that object by default (unlike Java).

c := Circle new.

• In Smalltalk, there is nothing special about new. It it just a

method.

Abstraction

Object subclass: ‘Circle’
 instanceVariableNames: ‘centerX centerY radius’
 new x: xvalue y: yvalue
 centerX := xvalue.
 centerY := yvalue.
 radius := 1.
 ^ self.

c := (Circle new) x: 3 y: 4.

Abstraction

• Objects collect both data (“instance variable”) and

functions (“methods”).

• The pairing of data and methods is specifically designed

to aid in the evolution of the software system: objects

encapsulate data, and the allowable operations on that

data are defined by methods.

Abstraction

• In Smalltalk everything is an object.

• Every object is also, transitively, a subclass of the base

class, Object.

• Java broke with this convention for performance reasons.

• It caused great pain when Java Generics were

introduced.

• Scala, which was heavily influenced by both Java and

Smalltalk, reverted to the everything-is-an-object model

(Scala’s base class is called Any).

Dynamic Dispatch

c getCenter

• Dynamic dispatch is how functions are called.

• Unlike in SML, functions (“methods”) are always tied to an

object (or class).

• A method is called (“dispatched”) by sending a “message”

to the “selector” of an object.

object selector

message{
Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

centerX

centerY

radius

Circle object Circle class Template

centerX

centerY

radius

Method dictionary
new

…

code

Inheritance
• Inheritance is a time-saving feature.

• It adds zero “power” to the language (does not change

the set of programs that one can write).

• However, it makes code substantially easier to write and

maintain.

• The idea is about reuse of code.

Circle subclass: ‘ColoredCircle’
 instanceVariableNames: ‘centerX centerY radius color’

• ColoredCircle will “inherit” the new method from Circle.

• No need to write method unless it is different.

Inheritance

• Inheritance relies on dynamic dispatch to find missing

methods.

centerX

centerY

radius

ColoredCircle object ColoredCircle class Template

centerX

centerY

radius

Method dictionary …

superclass (Circle)

color color

Subtyping

• ColoredCircle is a subtype of Circle because it can do all

of the things that Circle can do (and then some).

• We often create subtypes using the inheritance

mechanism.

• However, subtyping and inheritance are two completely

distinct concepts.

• Subtyping is about the logical relationship between two

types.

• Inheritance is a mechanism for code reuse.

Subtyping vs. Inheritance
• E.g., imagine you are going to implement a Dequeue, a

Stack, and a Queue.

• Stack: add and remove from one end (e.g., “left”).

• Queue: add from one end (e.g., “left”), remove from other

(e.g., “right”).

• Dequeue: add and remove from either end.

• Formally: 
Type A is a subtype of a type B if any context expecting

an expression of type B may take any expression of type

A without introducing a type error.

Subtyping vs. Inheritance

• Subtyping rule-of-thumb: can you substitute class A for

class B?

• If so, A <: B.

c := Circle new.
moveCircle c.

cc := ColoredCircle new.
moveCircle cc.

•Thus, ColoredCircle <: Circle.

Subtyping vs. Inheritance

• In terms of code reuse, it makes perfect sense to

implement a Stack and Queue on top a Dequeue.

Dequeue has all the functionality needed.

• (Smalltalk allows one to “uninherit” methods from a

superclass)

• But Stack and Queue are not subtypes of Dequeue!

• The converse is true!

Dequeue <: Stack
Dequeue <: Queue

Object-Oriented Extensibility
• Dan Ingalls developed a test for what qualifies as an

“object-oriented” programming language.

• The test is about the ability to extend software after it has

already been designed and written.

• E.g., suppose you have a class for a

ColoredRectangle.

• Can you define a new kind of number (e.g., fractions), use

your new numbers to define a new kind of rectangle, ask

the system to color the rectangle, and have everything

work? If so, you have an OO system.

OO vs Functional Tradeoff

• OO offers a different kind of extensibility than functional

(or function-oriented) languages.

• Suppose you’re modeling a hospital.

Operation Doctor Nurse Orderly

Print

Pay

Print Doctor Print Nurse Print Orderly

Pay Doctor Pay Nurse Pay Orderly

•Functional programming makes it easy to add operations.

•OO programming makes it easy to add data.

Polymorphism
• Dynamic dispatch allows for a kind of polymorphism.

• It does not matter whether a method exists because of a

superclass or because it just happens to be there.

wheels

color

doors

Toyota object Toyota class Template

wheels

color

doors

Method dictionary …

superclass (Vehicle)

… …

Polymorphism
• E.g,. both Geese and Toyotas can honk.

• Goose is not a subtype of Vehicle!

• Goose is does not inherit from Vehicle!

color

wingLength

numFeathers

Goose object Goose class Template

color

wingLen.

numFea.

Method dictionary honk

superclass (Animal)

… …

Object-Closure Duality
• Objects are kind of closure: can be simulated using

activation records that bind over function names.

• But it is very difficult to implement subtyping and

inheritance correctly without first-class support!

color

wingLength
numFeathers

Goose object Goose class Template

color

wingLen.
numFea.

Method dictionary honk

superclass (Animal)

… …

