
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 14: Tail Calls and Continuations

Announcements

Please download and use new HW6.

The one I handed out in class had a question from

HW5 on it! Oops!

Activation Records

What purpose do they serve?

They are part of a data structure (“call stack”) used to

evaluate a program (“stack evaluation”).

The alternative form of evaluation we’ve discussed is

λ-calculus reduction.

The two are duals:

• activation records track definitions (λ abstraction)

• activation records track function calls (application)

Tail Recursion

fun sum (x::xs) = x + sum xs
 | sum [] = 0

A function is in “tail recursive form” when the last thing

a function does is either:

Is this function tail recursive?

No.

1. return a value

2. call itself

Tail Recursion

fun sum (x::xs) = ((+x)(sum xs))
 | sum [] = 0

Let’s rewrite sum (using a curried +) to make it obvious

why + is the “last thing done.”

fun sum (x::xs) = x + sum xs
 | sum [] = 0

Tail Recursion

Tail recursive functions can often be automatically

optimized by the language compiler; in fact, tail

recursive functions aren’t just faster; evaluation only

takes constant space!

This form of optimization is call tail call elimination.

First, let’s see why ordinary recursion is problematic.

Evaluation of Ordinary Recursive Fn

fun sum (x::xs) = x + sum xs
 | sum [] = 0

call stack

main x

sum [1,2,3]
work before
recursive call work after call

Evaluation of Ordinary Recursive Fn

fun sum (x::xs) = x + sum xs
 | sum [] = 0

call stack

main x

sum [1,2,3]

sum xs (+1)

work before
recursive call work after call

[1,2,3]

Evaluation of Ordinary Recursive Fn

fun sum (x::xs) = x + sum xs
 | sum [] = 0

call stack

main x

sum [1,2,3]

sum xs

sum xs

[1,2,3]

work before
recursive call work after call

[2,3] (+2)

(+1)

Evaluation of Ordinary Recursive Fn

fun sum (x::xs) = x + sum xs
 | sum [] = 0

call stack

main x

sum [1,2,3]

sum xs

sum xs

[1,2,3]

work before
recursive call work after call

[2,3]

sum xs[3] (+3)

(+1)

(+2)

Evaluation of Ordinary Recursive Fn

fun sum (x::xs) = x + sum xs
 | sum [] = 0

call stack

main x

sum [1,2,3]

sum xs

sum xs

[1,2,3]

work before
recursive call work after call

[2,3]

sum xs[3]

sum xs[] 0

(+1)

(+2)

(+3)

Evaluation of Ordinary Recursive Fn

fun sum (x::xs) = x + sum xs
 | sum [] = 0

call stack

main x

sum [1,2,3]

sum xs

sum xs

[1,2,3]

work before
recursive call work after call

[2,3]

sum xs[3]

(+1)

(+2)

(+3)0

Evaluation of Ordinary Recursive Fn

fun sum (x::xs) = x + sum xs
 | sum [] = 0

call stack

main x

sum [1,2,3]

sum xs

sum xs

[1,2,3]

work before
recursive call work after call

[2,3]

(+1)

(+2)3

Evaluation of Ordinary Recursive Fn

fun sum (x::xs) = x + sum xs
 | sum [] = 0

call stack

main x

sum [1,2,3]

sum xs[1,2,3]

work before
recursive call work after call

(+1)5

Evaluation of Ordinary Recursive Fn

fun sum (x::xs) = x + sum xs
 | sum [] = 0

call stack

main x

sum [1,2,3]
work before
recursive call work after call

6

Rewrite in tail form

fun sum (x::xs) acc = sum xs (acc + x)
 | sum [] acc = acc

Let’s rewrite sum to make the recursive call the “last

thing done.”

fun sum (x::xs) = x + sum xs
 | sum [] = 0

Evaluation of Tail Recursive Fn

call stack

main x

sum [1,2,3] 0
work before
recursive call work after call

fun sum (x::xs) acc = sum xs (acc + x)
 | sum [] acc = acc

Evaluation of Tail Recursive Fn

call stack

main x

sum [1,2,3] 0
work before
recursive call work after call

fun sum (x::xs) acc = sum xs (acc + x)
 | sum [] acc = acc

[1,2,3] 0 sum xs acc (just return)

Evaluation of Tail Recursive Fn

call stack

main x

sum [1,2,3] 0
work before
recursive call work after call

fun sum (x::xs) acc = sum xs (acc + x)
 | sum [] acc = acc

[1,2,3] 0 sum xs acc

[2,3] 1 sum xs acc

(just return)

(just return)

Evaluation of Tail Recursive Fn

call stack

main x

sum [1,2,3] 0
work before
recursive call work after call

fun sum (x::xs) acc = sum xs (acc + x)
 | sum [] acc = acc

[1,2,3] 0 sum xs acc

[2,3] 1 sum xs acc

[3] 3 sum xs acc

(just return)

(just return)

(just return)

Evaluation of Tail Recursive Fn

call stack

main x

sum [1,2,3] 0
work before
recursive call work after call

fun sum (x::xs) acc = sum xs (acc + x)
 | sum [] acc = acc

[1,2,3] 0 sum xs acc

[2,3] 1 sum xs acc

[3] 3 sum xs acc

[] 6 sum xs acc

(just return)

(just return)

(just return)

(just return 6)

Evaluation of Tail Recursive Fn

call stack

main x

sum [1,2,3] 0
work before
recursive call work after call

fun sum (x::xs) acc = sum xs (acc + x)
 | sum [] acc = acc

[1,2,3] 0 sum xs acc

[2,3] 1 sum xs acc

[3] 3 sum xs acc

(just return)

(just return)

(just return 6)

Evaluation of Tail Recursive Fn

call stack

main x

sum [1,2,3] 0
work before
recursive call work after call

fun sum (x::xs) acc = sum xs (acc + x)
 | sum [] acc = acc

[1,2,3] 0 sum xs acc

[2,3] 1 sum xs acc

(just return)

(just return 6)

Evaluation of Tail Recursive Fn

call stack

main x

sum [1,2,3] 0
work before
recursive call work after call

fun sum (x::xs) acc = sum xs (acc + x)
 | sum [] acc = acc

[1,2,3] 0 sum xs acc (just return 6)

Evaluation of Tail Recursive Fn

call stack

main x

sum [1,2,3] 0
work before
recursive call work after call

fun sum (x::xs) acc = sum xs (acc + x)
 | sum [] acc = acc

6

Tail Call Elimination

fun sum (x::xs) acc = sum xs (acc + x)
 | sum [] acc = acc

If no work is being done after a recursive call, the

activation record does not need to be kept around.

In this example, we can “goto main” directly.

Optimized Evaluation of Tail Recursive Fn

call stack

main x

sum [1,2,3] 0
work before
recursive call work after call

fun sum (x::xs) acc = sum xs (acc + x)
 | sum [] acc = acc

call stack

main x

sum [1,2,3] 0
work before
recursive call work after call

fun sum (x::xs) acc = sum xs (acc + x)
 | sum [] acc = acc

Optimized Evaluation of Tail Recursive Fn

[1,2,3] 0 sum xs acc (just return)

call stack

main x

sum [1,2,3] 0
work before
recursive call work after call

fun sum (x::xs) acc = sum xs (acc + x)
 | sum [] acc = acc

Optimized Evaluation of Tail Recursive Fn

[2,3] 1 sum xs acc (just return)

call stack

main x

sum [1,2,3] 0
work before
recursive call work after call

fun sum (x::xs) acc = sum xs (acc + x)
 | sum [] acc = acc

Optimized Evaluation of Tail Recursive Fn

[3] 3 sum xs acc (just return)

call stack

main x

sum [1,2,3] 0
work before
recursive call work after call

fun sum (x::xs) acc = sum xs (acc + x)
 | sum [] acc = acc

Optimized Evaluation of Tail Recursive Fn

[] 6 sum xs acc (just return 6)

call stack

main x

sum [1,2,3] 0
work before
recursive call work after call

fun sum (x::xs) acc = sum xs (acc + x)
 | sum [] acc = acc

Optimized Evaluation of Tail Recursive Fn

6

fun sum (x::xs) acc = sum xs (acc + x)
 | sum [] acc = acc

By the way!

foldl is always tail recursive.

fun sum xs =
 foldl (fn (x,acc) => acc + x) xs

foldr is not! Typical implementation:

fun foldr f acc (x::xs) = f (x,foldr f acc xs)
 | foldr f acc [] = acc

Continuations

• Controlling evaluation order gives us more flexibility

(e.g., optimization opportunities).

• One reason evaluation order is hard to think about is

that much of it is implicit. What happens after a

function is called depends on who calls it.

• A continuation makes control flow explicit.

Continuations

A continuation is a function that represents “the rest of

the program” from a point in a given program.

A continuation is “what to do next.”

Continuations

code code code

code code code

code code code code

code code code code

code code code code

code code code code

code code code code

code code code code

code code code done

point

program

Continuations

code code code

code code code

code code code code

code code code code

code code code codepoint

program

code code code code

code code code code

code code code code

code code code done

f()

f:

Example

fun run() =
 (print “What is your name? “;
 let val name = readline() in
 print (“Hello “ ^ name)
 end)

Example

fun f() =
 let val name = readline() in
 print (“Hello “ ^ name)
 end

fun run() =
 (print “What is your name? “; f())

Note: run “just returns” when f returns.

I.e., run is in “tail form.”

Rewrite in continuation-passing style

fun sum (x::xs) k = sum xs (fn y => k(y + x))
 | sum [] k = k 0

Let’s rewrite sum to use a continuation.

fun sum (x::xs) = x + sum xs
 | sum [] = 0

Note that sum is in tail form.

We either call sum or k as the last thing we do.

sum “just returns” after calls to sum and k.

call stack

main x

sum [1,2,3](fn x => x)
work before
recursive call work after call

Evaluation of Function Using Continuation

fun sum (x::xs) k = sum xs (fn y => k(y + x))
 | sum [] k = k 0

call stack

main x

sum [1,2,3](fn x => x)
work before
recursive call work after call

Evaluation of Function Using Continuation

fun sum (x::xs) k = sum xs (fn y => k(y + x))
 | sum [] k = k 0

[1,2,3] I sum xs k (just return)

call stack

main x

sum [1,2,3](fn x => x)
work before
recursive call work after call

Evaluation of Function Using Continuation

fun sum (x::xs) k = sum xs (fn y => k(y + x))
 | sum [] k = k 0

[1,2,3] I sum xs k (just return)

sum xs k[2,3] λy.I(y+1) (just return)

call stack

main x

sum [1,2,3](fn x => x)
work before
recursive call work after call

Evaluation of Function Using Continuation

fun sum (x::xs) k = sum xs (fn y => k(y + x))
 | sum [] k = k 0

[1,2,3] I sum xs k (just return)

sum xs k[2,3] λy.I(y+1) (just return)

sum xs k[3] λy.λy.(I(y+1))(y+2) (just return)

call stack

main x

sum [1,2,3](fn x => x)
work before
recursive call work after call

Evaluation of Function Using Continuation

fun sum (x::xs) k = sum xs (fn y => k(y + x))
 | sum [] k = k 0

[1,2,3] I sum xs k (just return)

sum xs k[2,3] λy.I(y+1) (just return)

sum xs k[3] λy.λy.(I(y+1))(y+2) (just return)

sum xs k
[] λy.λy.λy.  
 ((I(y+1))(y+2))(y+3) (just return)

call stack

main x

sum [1,2,3](fn x => x)
work before
recursive call work after call

Evaluation of Function Using Continuation

fun sum (x::xs) k = sum xs (fn y => k(y + x))
 | sum [] k = k 0

[1,2,3] I sum xs k (just return)

sum xs k[2,3] λy.I(y+1) (just return)

sum xs k[3] λy.λy.(I(y+1))(y+2) (just return)

sum xs k
[] λy.λy.λy.  
 ((I(y+1))(y+2))(y+3)

k (just return 6)

(just return)

(just return 6)

call stack

main x

sum [1,2,3](fn x => x)
work before
recursive call work after call

Evaluation of Function Using Continuation

fun sum (x::xs) k = sum xs (fn y => k(y + x))
 | sum [] k = k 0

[1,2,3] I sum xs k (just return)

sum xs k[2,3] λy.I(y+1) (just return)

sum xs k[3] λy.λy.(I(y+1))(y+2) (just return)

sum xs k
[] λy.λy.λy.  
 ((I(y+1))(y+2))(y+3)

(just return 6)

call stack

main x

sum [1,2,3](fn x => x)
work before
recursive call work after call

Evaluation of Function Using Continuation

fun sum (x::xs) k = sum xs (fn y => k(y + x))
 | sum [] k = k 0

[1,2,3] I sum xs k (just return)

sum xs k[2,3] λy.I(y+1) (just return)

sum xs k[3] λy.λy.(I(y+1))(y+2)

(just return 6)

call stack

main x

sum [1,2,3](fn x => x)
work before
recursive call work after call

Evaluation of Function Using Continuation

fun sum (x::xs) k = sum xs (fn y => k(y + x))
 | sum [] k = k 0

[1,2,3] I sum xs k (just return)

sum xs k[2,3] λy.I(y+1)

(just return 6)

call stack

main x

sum [1,2,3](fn x => x)
work before
recursive call work after call

Evaluation of Function Using Continuation

fun sum (x::xs) k = sum xs (fn y => k(y + x))
 | sum [] k = k 0

[1,2,3] I sum xs k

call stack

main x

sum [1,2,3](fn x => x)
work before
recursive call work after call

Evaluation of Function Using Continuation

fun sum (x::xs) k = sum xs (fn y => k(y + x))
 | sum [] k = k 0

6

call stack

main x

sum [1,2,3](fn x => x)
work before
recursive call work after call

Awesome… Tail Call Elimination Time!

fun sum (x::xs) k = sum xs (fn y => k(y + x))
 | sum [] k = k 0

[1,2,3] I sum xs k (just return)

sum xs k[2,3] λy.I(y+1) (just return)

sum xs k[3] λy.λy.(I(y+1))(y+2) (just return)

sum xs k
[] λy.λy.λy.  
 ((I(y+1))(y+2))(y+3)

k (just return 6)

(just return)}riiiiiight???

Awesome… Tail Call Elimination Time!

fun sum (x::xs) k = sum xs (fn y => k(y + x))
 | sum [] k = k 0

Sadly… no.

Not yet, anyway.

Why?

When we call this continuation,

how do we know what the value of x is?

}

Lexically scope: follow the access link for the function.

This means: we cannot eliminate activation records.

Awesome… callcc/throw time!

Which was why callcc and throw were invented.

callcc: “call with current continuation.”

throw: used to call the continuation itself.

A function written with callcc and throw is

guaranteed to be tail-call optimizable.

Rewrite using callcc/throw

Let’s rewrite sum to use continuation operators.

fun sum (x::xs) = x + sum xs
 | sum [] = 0

Note that sum doesn’t look like a function in tail form.

fun sum (x::xs) k = x + callcc(sum xs)
 | sum [] k = throw k 0

callcc (sum [1,2,3])

We don’t even need to build continuations ourselves.

Continuations Are Powerful

• Continuations are often referred to as a “functional goto”.

• All forms of control flow can be emulated using

continuations.

• They are not necessarily convenient or readable.

• Super interesting, useful applications:

• Saving and restoring the call stack (more capable than

setjmp/longjmp); i.e., “suspend and resume”.

• Very efficient backtracking search (AI algorithms).

• Compile-time code transformation (used widely!).

