Midterm Exam

Note: This was a challenging exam.

CSC' 334 Midterm Exam Scores
Principles of Programming Languages 16
Lecture 13: Exceptions ; “eeds'mp“”eme”t I
Instructor: Dan Barowy not so good
Wllllams (come see me) good Serloustw great |

exceedingly grea

Midterm Exam Announcements

Midterm exam grades are not necessarily a
reflection of your final grade; homework is

more important! HW5 solutions

If you are worried, come see me!

Announcements

HW6 out today, due next Wednesday, April 11.

Announcements

Typo on HWE: if you want a new partner, notify
me (via email) by Wed, April 4 with your

partner's name

Announcements

Grades for HW3 programming portion, HW4,
HW5 will be back soon.

Refresher: First-class functions

+ A language with first-class functions treats functions no

differently than any other value:

- You can assign functions to variables:

val £f = fn x => x + 1

- You can pass functions as arguments:

fun g h = h 3

g f

+ You can return functions:

fun k x = fn () => x + 3

- First-class function support complicates

implementation of lexical scope.

First Class Functions

- To implement support for first class functions, we need
two additional data structures:
+ Access links
- Closures

- The implementation difficulty of maintaining lexical
scope for first class function is called the funarg

problem.

Access link

+ An access link is a pointer from the current activation

record to the activation record of the closest lexical

scope.

- In other words, the access link in the activation frame

for a function f points to where f was defined.

+ Why do we need access links? So that the language

can determine the values of free variables in a function.

Closure

- Aclosure is a tuple that represents a function value. One
tuple value points to a function's code and the other
value points to the activation record of the point of

definition of the function (i.e, closest lexical scope).

Example

val x = 4

fun £ v = x * vy

o
Il

fun g let val x = 7 in (h 3) + x

g £

Desugared Example

let val x = 4 in
let £ = fn y => x * 4 in
let g =
fn h => let val x = 7 in (h 3) + x in
g f
end
end

end

Blocks Define Activation Records

w*w-ﬂb‘val x =4
fun £y =x *y
fun g h = let val x = 7 in (h 3) + x

g f

call stack

Blocks Define Activation Records

val x = 4

ety fun £ y = x * y
fun g h = let val x = 7 in (h 3) + x
g f

il T3

x =4

call stack

Blocks Define Activation Records

val x = 4
fun £ y = x * y
~—$p fun g h = let val x = 7 in (h 3) + x

g f
g =
AL = ——

—)
f =
i =
x =4
call stack

Blocks Define Activation Records

val x = 4
fun f vy =x * vy
~—fp fun g h = let val x = 7 in (h 3) + x
g f
/\
e = <]
AL = —
—) =
£ =
S |
x =4
call stack

Blocks Define Activation Records

val x = 4
fun £y =x *y
fun g h = let val x = 7 in (h 3) + x
~—fp g f
n = —1
g f x =7
AL =
e = (<]
AL = ——
T —
,/9/
f =
AL = 7 \/ |
x =4
call stack

g f

Blocks Define Activation Records

val x =
fun £ y X *y
fun g h = let val x = 7 in (h 3) + x

T t

1%\ B
=

([

|

f =
AL =

x =4

call stack

Blocks Define Activation Records

val x = 4
funfy=x*y{———“
fun g h = let val x = 7 in (h 3) + x
g f
y =3
h 3 x = AL.x X = ?
A

h

g f x =7 ;T—\
AL =
g=

AL = ——

— T =

x =4

nin
-]

call stack

Blocks Define Activation Records

Activation Records in Functional Langs

val x = 4
funfy:x*yﬁ-—-—- let Valg:
fun g h = let val x = 7 in (h 3) + x
g £ let
val x =1
=3
n Ve = AL.x X = 4 fun £ () = x + 1
AL = in
h - —
g x =17 f
= :; end
Z—?L := — | Izl in
B g0)
AL = 7 K/ | end
x =4 . . .
How is this function evaluated? Do we
call stack have a problem when we call g () ?
Upward funargs Upward funargs
~——fp let val g = let val g =
letvval x =1 '—"'—-} letvval x =1
fun £ () = x + 1 fun £ () = x + 1
in £ end in £ end
in g () end in g () end
1. Push let block for g onto call 1. Push let block for g onto call
stack. We don't yet know g's value. stack. We don't yet know g's value.
2. Push let block for x and f.
Xf::l//\
e S
g = g = ?/
AL = .. AL =
call stack call stack

Upward funargs

let val g =
let val x =1
fun £ () = x + 1

"""" in f end

in g() end

1. Push let block for g onto call

stack. We don't yet know g's value.

2. Push let block for x and f.
3. Return £. We have a problem!

—

Upward funargs
gy let val g =

let val x =1

fun £ () = x + 1
in £ end
in g() end

Push 1et block for g onto call
stack. We don't yet know g's value.
. Push let block for x and f.
. Return £. \We have a problem!
4. The fix. delay deallocating record
until we are done using it. Instead
of using stack, just heap allocate
frames and use garbage collector!

S
Hh
I
[,
N

-

Q>
2=

g = g -
AL = AL =
call stack heap-allocated records
Upward funargs Safety
let val g =
let val x 1
AL = fun £ () = x + 1
g() _ in f end . : u W
cL “ i g0 end SML is a "safe’ language.
-1 1. Push let block for g onto call - What does that mean?
£ = — stack. We don't yet know g's value. . o .
AL = 2. Push let block for x and f. - It means that execution behavior is determined solely
CL = \ 3. Return £.\We have a problem!
4. The fix delay deallocating record by the program, not:
until we are done using it. Instead . .
of using stack, just heap allocate a. the implementation of the language, or
frames and use garbage collector!
b. the design of the hardware
£
g = 5. Now we can call g () and it will
AL = work correctly.

heap-allocated records

Safety
- How is safety achieved?
- Type checking rules out manifestly incorrect

constructs.

“hello” - “world”

- However, type checking cannot rule out all errors.

fun sum (xs: int list) =

foldl (fn (x,acc) => x + acc) 0 xs
fun mean (xs: int list) =

(sum xs) div (List.length xs)

- For these kinds of errors, we use "exceptions.”

Exceptions

- In ML (and in Java), exceptions have three parts:

a. Exception declaration:
exception MyException of string

b. Exception use:

raise MyException “Don’t send me back to school!”

. Exception handling:

handle MyException msg => msg ~ “? Fine. Here’s

your tuition bill. Pay it yourself.”

Exceptions

- More generally..
a. Exception declaration:
exception <exception name> [of <type>]
b. Exception use:
raise <exception name> [expr]
c.Exception handling:

handle <pattern>

A real example

fun sum (xs: int list) =

foldl (fn (x,acc) => x + acc) 0 xs

fun mean (xs: int list) =

(sum xs) div (List.length xs)

- mean [] handle Div => 0;

A real example

exception ZeroLength
fun sum (xs: int list) =
foldl (fn (x,acc) => x + acc) 0 xs
fun mean (xs: int list) =
if List.length xs = 0 then
raise ZeroLength

else (sum xs) div (List.length xs)

—mean [] handle

Div => 0

| ZeroLength => 1 (* .. for fun *)

val it =

Exceptions aren't just for errors

- Exceptions are actually a special form of goto.

- You can use them to return data to any calling function

on the stack.

Exceptions for efficiency

datatype tree =
Leaf of int

| Node of tree * tree

fun prod (Leaf x) = x

| prod (Node(x,y)) = prod x * prod y

val t = Node (Node (Leaf 1, Leaf 2), Leaf 3)

Exceptions for efficiency

- What if .

val t = Node (Node (Leaf 0, Leaf 2), Leaf 3)
- prod t;

val it = 0 : int

- Somewhat inefficient, isn't it?

Exceptions for efficiency
exception Zero

fun prod (Leaf x) =

if x = 0 then raise Zero else x

| prod (Node(x,y)) = prod x * prod y

val t = Node (Node (Leaf 0, Leaf 2), Leaf 3)

- prod t handle Zero => 0;

val it =

Exceptions are dynamically scoped

+ Remember: variable bindings are statically (lexically)

scoped.

+ Exceptions are dynamically scoped.

fun prod (Leaf x) =
if x = 0 then raise Zero else x

| prod (Node(x,y)) = prod x * prod y

- Remember that | said raise is like goto?

+ Where would this raise "go to"? We haven't even used

prod yet!

Exceptions are dynamically scoped

val t = Node (Node (Leaf 2, Leaf 0), Leaf 3)

prod t handle Zero => 0;
(2] [o]

T

u
ot C— O~[3~ [

call stack

Exceptions are dynamically scoped

val t = Node (Node (Leaf 2, Leaf 0), Leaf 3)

prod t handle Zero => 0;

(2] [o]

T

o
o ERUENH

call stack

Exceptions are dynamically scoped

val t = Node (Node (Leaf 2, Leaf 0), Leaf 3)
prod t handle Zero => 0;

[~]
(<]

g

prod t /

prod t—"]

proa [E
call stack

Exceptions are dynamically scoped

val t = Node (Node (Leaf 2, Leaf 0), Leaf 3)

prod t handle Zero => 0;

(2] [o]
v
Eer t_,_ D I__I_lj

call stack

Exceptions are dynamically scoped

val t = Node (Node (Leaf 2, Leaf 0), Leaf 3)
prod t handle Zero => 0;

- Pop ("‘unwind") the stack

2
until handler is found IEI

raise Zero

)

prod t

t// il
o ERUENH

call stack

Exceptions are dynamically scoped

val t = Node (Node (Leaf 2, Leaf 0), Leaf 3)
prod t handle Zero => 0;

- Pop (‘unwind”) the stack

(2] [o]

T

prod t—[2 *
prod t IZI

handler is here

until handler is found.

Exceptions are dynamically scoped

val t = Node (Node (Leaf 2, Leaf 0), Leaf 3)
prod t handle Zero => 0;

+ Pop ("‘unwind’) the stack E
until handler is found.

T

i
ot e BT

\
call stack

handler is here

Exceptions are dynamically scoped

val t = Node (Node (Leaf 2, Leaf 0), Leaf 3)

prod t handle Zero => 0;

- Pop (‘unwind”) the stack

until handler is found. IZ' E‘

T

h
&ﬁﬂ—l

hand eris here

call stack

Exceptions are dynamically scoped

val t = Node (Node (Leaf 2, Leaf 0), Leaf 3)
prod t handle Zero => 0;

- Pop ("‘unwind") the stack

until handler is found.

alo
)

h
&ﬁ}@

hand eris here
call stack now handle exception

Activity

What is the value of the following expression?

exception X

(let fun f(y) = raise X
and g(h) = h(l) handle X => 2 in
g(f) handle X => 4 end)

handle X => 6

