
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 13: Exceptions

Midterm Exam

0

2

4

6

8

10

12

14

16

18

0-49 50-59 60-69 70-79 80-89 90-100

Midterm Exam Scores

good (seriously!)

Note: This was a challenging exam.

great

exceedingly great

{not so good

(come see me)

needs improvement

Midterm Exam

Midterm exam grades are not necessarily a

reflection of your final grade; homework is

more important!

If you are worried, come see me!

Announcements

HW5 solutions

HW6 out today, due next Wednesday, April 11.

Announcements Announcements

Typo on HW6: if you want a new partner, notify

me (via email) by Wed, April 4 with your

partner’s name

Announcements

Grades for HW3 programming portion, HW4,

HW5 will be back soon.

Refresher: First-class functions
• A language with first-class functions treats functions no

differently than any other value:

• You can assign functions to variables: 
val f = fn x => x + 1

• You can pass functions as arguments: 
fun g h = h 3  
g f

• You can return functions: 
fun k x = fn () => x + 3

• First-class function support complicates

implementation of lexical scope.

First Class Functions

• To implement support for first class functions, we need

two additional data structures:

• Access links

• Closures

• The implementation difficulty of maintaining lexical

scope for first class function is called the funarg

problem.

Access link
• An access link is a pointer from the current activation

record to the activation record of the closest lexical

scope.

• In other words, the access link in the activation frame

for a function f points to where f was defined.

• Why do we need access links? So that the language

can determine the values of free variables in a function.

Closure

• A closure is a tuple that represents a function value. One

tuple value points to a function’s code and the other

value points to the activation record of the point of

definition of the function (i.e., closest lexical scope).

Example

val x = 4

fun f y = x * y

fun g h = let val x = 7 in (h 3) + x

g f

Desugared Example

let val x = 4 in

 let f = fn y => x * 4 in

 let g =

 fn h => let val x = 7 in (h 3) + x in

 g f

 end  
 end

end

Blocks Define Activation Records

call stack

x = 4

val x = 4
fun f y = x * y
fun g h = let val x = 7 in (h 3) + x
g f

Blocks Define Activation Records

call stack

x = 4

val x = 4
fun f y = x * y
fun g h = let val x = 7 in (h 3) + x
g f

f =
AL = f

Blocks Define Activation Records

call stack

x = 4

val x = 4
fun f y = x * y
fun g h = let val x = 7 in (h 3) + x
g f

f =
AL = f

g =
AL =

Blocks Define Activation Records

call stack

x = 4

val x = 4
fun f y = x * y
fun g h = let val x = 7 in (h 3) + x
g f

f =
AL = f

g =
AL = g

Blocks Define Activation Records

call stack

x = 4

val x = 4
fun f y = x * y
fun g h = let val x = 7 in (h 3) + x
g f

f =
AL = f

g =
AL = g

h =
x = 7
AL =

g f

Blocks Define Activation Records

call stack

x = 4

val x = 4
fun f y = x * y
fun g h = let val x = 7 in (h 3) + x
g f

f =
AL = f

g =
AL = g

h =
x = 7
AL =

y = 3
x =
AL =

AL.x

g f

h 3

Blocks Define Activation Records

call stack

x = 4

val x = 4
fun f y = x * y
fun g h = let val x = 7 in (h 3) + x
g f

f =
AL = f

g =
AL = g

h =
x = 7
AL =

y = 3
x =
AL =

AL.x

g f

h 3 x = ?

Blocks Define Activation Records

call stack

x = 4

val x = 4
fun f y = x * y
fun g h = let val x = 7 in (h 3) + x
g f

f =
AL = f

g =
AL = g

h =
x = 7
AL =

y = 3
x =
AL =

AL.x

g f

h 3 x = 4

Activation Records in Functional Langs

let val g =
 let
 val x = 1
 fun f () = x + 1
 in
 f
 end
in
 g()
end

How is this function evaluated? Do we
have a problem when we call g()?

Upward funargs

call stack

g =
AL = …

let val g =
 let val x = 1

 fun f () = x + 1
in f end
in g() end

1. Push let block for g onto call
stack. We don’t yet know g’s value.

Upward funargs

call stack

g =
AL = …

let val g =
 let val x = 1

 fun f () = x + 1
in f end
in g() end

x = 1
f =
AL =
CL = f

1. Push let block for g onto call
stack. We don’t yet know g’s value.

2. Push let block for x and f.

Upward funargs

call stack

g =
AL = …

let val g =
 let val x = 1

 fun f () = x + 1
in f end
in g() end

f???

1. Push let block for g onto call
stack. We don’t yet know g’s value.

2. Push let block for x and f.
3. Return f. We have a problem!

Upward funargs

heap-allocated records

g =
AL = …

let val g =
 let val x = 1

 fun f () = x + 1
in f end
in g() end

1. Push let block for g onto call
stack. We don’t yet know g’s value.

2. Push let block for x and f.
3. Return f. We have a problem!
4. The fix: delay deallocating record

until we are done using it. Instead
of using stack, just heap allocate
frames and use garbage collector!

f

x = 1
f =
AL =
CL =

Upward funargs

heap-allocated records

g =
AL = …

let val g =
 let val x = 1

 fun f () = x + 1
in f end
in g() end

1. Push let block for g onto call
stack. We don’t yet know g’s value.

2. Push let block for x and f.
3. Return f. We have a problem!
4. The fix: delay deallocating record

until we are done using it. Instead
of using stack, just heap allocate
frames and use garbage collector! 
 
 

5. Now we can call g() and it will
work correctly.

f

x = 1
f =
AL =
CL =

AL =
CL =g()

Safety

• SML is a “safe” language.

• What does that mean?

• It means that execution behavior is determined solely

by the program, not:

a. the implementation of the language, or

b. the design of the hardware

Safety
• How is safety achieved?

• Type checking rules out manifestly incorrect

constructs. 
“hello” - “world”

• However, type checking cannot rule out all errors. 
fun sum (xs: int list) =  
 foldl (fn (x,acc) => x + acc) 0 xs  
fun mean (xs: int list) =  
 (sum xs) div (List.length xs)

• For these kinds of errors, we use “exceptions.”

Exceptions

• In ML (and in Java), exceptions have three parts:

a. Exception declaration: 
exception MyException of string

b. Exception use: 
raise MyException “Don’t send me back to school!”

c. Exception handling: 
handle MyException msg => msg ^ “? Fine. Here’s

your tuition bill. Pay it yourself.”

Exceptions

• More generally…

a. Exception declaration: 
exception <exception name> [of <type>]

b. Exception use: 
raise <exception name> [expr]

c.Exception handling: 
handle <pattern>

A real example

fun sum (xs: int list) =  
 foldl (fn (x,acc) => x + acc) 0 xs  
fun mean (xs: int list) =  
 (sum xs) div (List.length xs)

- mean [] handle Div => 0;  
val it = 0 : int

A real example
exception ZeroLength

fun sum (xs: int list) =  
 foldl (fn (x,acc) => x + acc) 0 xs  
fun mean (xs: int list) =

 if List.length xs = 0 then

 raise ZeroLength

 else (sum xs) div (List.length xs)

-mean [] handle  
 Div => 0  
| ZeroLength => 1 (* … for fun *)  
val it = 1 : int

Exceptions aren’t just for errors

• Exceptions are actually a special form of goto.

• You can use them to return data to any calling function

on the stack.

Exceptions for efficiency

datatype tree =

 Leaf of int  
| Node of tree * tree

fun prod (Leaf x) = x  
 | prod (Node(x,y)) = prod x * prod y

val t = Node(Node(Leaf 1, Leaf 2), Leaf 3)

- prod t;  
val it = 6 : int

Exceptions for efficiency

val t = Node(Node(Leaf 0, Leaf 2), Leaf 3)

- prod t;  
val it = 0 : int

• What if …

• Somewhat inefficient, isn’t it?

Exceptions for efficiency

fun prod (Leaf x) =

 if x = 0 then raise Zero else x  
 | prod (Node(x,y)) = prod x * prod y

exception Zero

val t = Node(Node(Leaf 0, Leaf 2), Leaf 3)

- prod t handle Zero => 0;  
val it = 0 : int

Exceptions are dynamically scoped

• Remember: variable bindings are statically (lexically)

scoped.

• Exceptions are dynamically scoped.

fun prod (Leaf x) =

 if x = 0 then raise Zero else x  
 | prod (Node(x,y)) = prod x * prod y

• Remember that I said raise is like goto?

• Where would this raise “go to”? We haven’t even used

prod yet!

Exceptions are dynamically scoped

val t = Node(Node(Leaf 2, Leaf 0), Leaf 3)

call stack

prod t handle Zero => 0;

…
prod t

2 0

3

Exceptions are dynamically scoped

call stack

prod t handle Zero => 0;

…
prod t

tprod

val t = Node(Node(Leaf 2, Leaf 0), Leaf 3)

2 0

3

Exceptions are dynamically scoped

call stack

prod t handle Zero => 0;

…
prod t

tprod

tprod

val t = Node(Node(Leaf 2, Leaf 0), Leaf 3)

2 0

3

Exceptions are dynamically scoped

call stack

prod t handle Zero => 0;

…
prod t

tprod 2 *

val t = Node(Node(Leaf 2, Leaf 0), Leaf 3)

2 0

3

Exceptions are dynamically scoped

call stack

prod t handle Zero => 0;

…
prod t

tprod

tprod

2 *

raise Zero

• Pop (“unwind”) the stack 
until handler is found.

val t = Node(Node(Leaf 2, Leaf 0), Leaf 3)

2 0

3

Exceptions are dynamically scoped

call stack

prod t handle Zero => 0;

…
prod t

tprod 2 *

handler is here

val t = Node(Node(Leaf 2, Leaf 0), Leaf 3)

2 0

3

• Pop (“unwind”) the stack 
until handler is found.

Exceptions are dynamically scoped

call stack

prod t handle Zero => 0;

…
prod t

handler is here

val t = Node(Node(Leaf 2, Leaf 0), Leaf 3)

2 0

3

• Pop (“unwind”) the stack 
until handler is found.

Exceptions are dynamically scoped

call stack

prod t handle Zero => 0;

…
handler is here

val t = Node(Node(Leaf 2, Leaf 0), Leaf 3)

2 0

3

• Pop (“unwind”) the stack 
until handler is found.

Exceptions are dynamically scoped

call stack

prod t handle Zero => 0;

…
handler is here

now handle exception

val t = Node(Node(Leaf 2, Leaf 0), Leaf 3)

2 0

3

• Pop (“unwind”) the stack 
until handler is found.

Activity

exception X

(let fun f(y) = raise X  
 and g(h) = h(1) handle X => 2 in  
 g(f) handle X => 4 end)

handle X => 6

What is the value of the following expression?

