Announcements

CSCl 334:

Principles of Programming Languages Midterm exam next class.

Thursday, March 15 in TCL 206
Lecture 12: Control Structures |l during class meeting time.

Instructor: Dan Barowy

Williams
Announcements Announcements
Study session tonight from 4-5pm. HW3 grades nearly done.
Will be audio recorded if you cannot make it. | willdo my best to get you HW4 grades but no

You will drive; bring questions, please. promises!

A note about stack diagrams

Mitchell draws them upside down for historical reasons.

Pedagogically bad.
\We push values ‘on the top” of a stack.

Also, for functional languages, not technically correct.

Anyway, draw them whichever way you want.
I will draw them right-side up.

A note about stack diagrams

call stack

main x

car X cons X y

cdr x cdr x

cons x vy car x

main x

call stack

Mitchell me

Blocks

-\What is a "block’?

-Not the same "block” as in "block structured
language”!

- A block denotes scope.

-You've seen them before.

public static void main (String[] args) {

// code inside block
}

Blocks

public static void main (String[] args)

return x;

}

- What kind of variable is x?

- x 'Is global to" the scope of main.

{

Scope

A variable is a binding of a value to a name.
- Scope is the region of a computer program

where a variable binding is valid.

class Program {
static int x = 5;
public static void main(String[] args) {

return x;

}
}

Block Scope

- A block is therefore a region associated with

variable bindings.

- This is valid (although not very useful) C:

{ int x = 5;
{ int y = 6;

{ int z =x + vy + 7; }

}

- Scopes are tracked on the runtime call stack.

Block Scope Evaluation

Start block 1 { int x = 5;

Start block 2 { int y = 6;

Start block 3 { int z = x + y + 7; } Endblock3
End block 2 }

End block 1 }

Block 3 z =x+y+7

Block 2 y =6

Block 1 x =5

call stack

-z is local to block 3; x and y are global to block 3.

Scoping Rules

val x = 5
fun £ vy = x + y
fun g () =

let val x = 6 in

£ 7

end

g (O

- Show of hands:

-Option 1. result is 13
- Option 2: result is 12

dynamic scope

lexical (static) scope

Dynamic Scope

Lexical (Static) Scope

val x = 5 val®= 5
fun £ y = + v fun fvy\=€<>+y
fun g () = fun g () =
let val = 6 in let val x = 6 in
£ 7 £ 7
end end
g (O g (O

Scope of f's variable x is where f is used. Scope of ' variable x is where f is defined.

Dynamic vs Lexical Scope exical Scope Rules Are Simple

D))],_.)]C Start block 1 { int x = 5;
ynamic scope is very confusing for I Cine v 6
programmers. Start block 3 { int z = x + y + 7; } Endblock3:
- LISP originally had dynamic scope. S blocke)
)) . End block 1 }
- Scheme introduced lexical scope into LISP;
Block 3 z=x+y+7
Common LISP did the same. Block 2 I
-Some modern languages still make this Hlocka 0

call stack

, | .
mistake! (€g., R, demo) - When resolving the value of a variable, start search locally,

then traverse up the call stack.

Lexical Scope Rules Are Simple

-Some languages (mostly functional ones) maintain explicit

‘control link” pointers to previous stack frames.

Block3 |* ©

Block 2 v =6 >
C
x = 5 >

Block 1:

- (You'll see why a bit later)

First Class Functions

+ A language with first-class functions treats functions no

differently than any other value:

- You can assign functions to variables:

val £ = fn x => x + 1

- You can pass functions as arguments:

fun g h = h 3

g f

- You can return functions:

fun k x = fn () => x + 3

- First-class function support complicates

implementation of lexical scope.

First Class Functions

- To implement support for first class functions, we need
two additional data structures:
+ Access links
- Closures

- The implementation difficulty of maintaining lexical
scope for first class function is called the funarg
problem.

- Scheme was the first language to fix it.

- This difficulty was why LISP had dynamic scope!

Access link

+ An access link is a pointer from the current activation
record to the activation record of the closest lexical

scope.

- In other words, the access link in the activation frame

for a function f points to where f was defined.

Closure

- Aclosure is a tuple that represents a function value. One
tuple value points to a function's code and the other
value points to the activation record of the point of

definition of the function (i.e., closest lexical scope).

val x = 4

Example

fun £f v = x * y

o
Il

fun g
g f

let val x = 7 in

(h 3) + x

Blocks Define Activation Records

———fp val x = 4
fun £ y = x * y
fun g h = let val x = 7 in (h 3) + x
g f

call stack

Blocks Define Activation Records

val x = 4
gy fun £ y = x *
fun g h =
g f
-

AL =

x =4

y

let val x = 7 in (h 3) + x

call stack

Desugared fun Bindings Blocks Define Activation Records

val x = 4
fun £y =x *y

let val x = 4 in ~—$p fun g h = let val x = 7 in (h 3) + x
g f

let £ = fn y => x * 4 in
let g =
fn h => let val x = 7 in (h 3) + x in

g f
g =
end M””_“;>/,____\\\‘
end AfL::/ |
end % = 4 t>
call stack

Blocks Define Activation Records Blocks Define Activation Records

val x = 4 val x = 4

fun f y = x * y fun f y = x * y
-——-—-—}funqh:letvalx:7in(h3)+x fun g h = let val x = 7 in (h 3) + x

g £ —yp g £

AL ;9/’T___“‘\» £
N

\j\
] []
AU

f
AL

x =4 x =4

call stack call stack

Blocks Define Activation Records

Blocks Define Activation Records

val x = 4 val x = 4
fun f vy =x * vy funfy:x*y{-—w
fun g h = let val x = 7 in (h 3) + x fun g h = let val x = 7 in (h 3) + x
g £ g f
y =3 y =3
h 3 x = AL.x 3 x = AL.x X = ?
AL = AL =
h = — h = —
g f x =7 £ x =7
AL AL =
e = [e = [
AL = — AL, = ——
AR A
x =4 7 X = 4 7
call stack call stack
Blocks Define Activation Records Activation Records in Functional Langs
val x = 4
funfy=x*y‘———' letvalg:
fun g h = let val x = 7 in (h 3) + x let
g f
- val x =1
h 3 Y x = 4 fun £ () = x + 1
AL = in
g f Xh::7 f
= :/ end
AgL_: ‘%ﬁ\| in
_ g()
an - | end

x =4

call stack

How is this function evaluated? Do we
have a problem when we call g () ?

Upward funargs
--—-b let val g =

let val x =1

fun £ () = x + 1
in £ end
in g() end

1. Push let block for g onto call

stack. We don't yet know g's value.

Upward funargs

let val g =

——fp let val x = 1
fun £ () = x + 1
in £ end
in g() end

1. Push let block for g onto call
stack. We don't yet know g's value.
2. Push let block for x and f.

x =1
—_—

s

g = g =
AL = AL = ..
call stack call stack
Upward funargs Upward funargs
let val g = ——fp let val g =
let val x =1 let val x =1
fun £ () = x + 1 fun £ () = x + 1
- in f end in f end
in g() end in g() end
1. Push let block for g onto call x =1 1. Push let block for g onto call
stack. We don't yet know g's value. £ = — | stack. We don't yet know g's value.
2. Push let block for x and f. AL = 2. Push let block for x and f.
3. Return £. We have a problem! CL = \\ 3. Return £. We have a problem!

4. The fix is delay deallocating record
until we are done using it. Instead
of using stack, just heap allocate
frames and use garbage collector!

27?2
— 1]
g = g =
AL = AL =
call stack heap-allocated records

Upward funargs

let val g =
let val x =1

AL = fun £ () = x + 1
g () cL :\ in f end
|

gy in g() end

1. Push let block for g onto call
stack. We don't yet know g's value.

2. Push let block for x and f.

3. Return £. We have a problem!

4. The fix is delay deallocating record

until we are done using it. Instead

of using stack, just heap allocate

frames and use garbage collector!

Now we can call g () and it will
work correctly.

°)
L

oy
=

A

heap-allocated records

