
CSCI 334: 
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 12: Control Structures III

Announcements

Midterm exam next class. 

Thursday, March 15 in TCL 206 

during class meeting time.

Announcements

Study session tonight from 4-5pm. 

Will be audio recorded if you cannot make it. 

You will drive; bring questions, please.

Announcements

HW3 grades nearly done. 

I will do my best to get you HW4 grades but no 

promises!



A note about stack diagrams

Mitchell draws them upside down for historical reasons.

Pedagogically bad. 
We push values “on the top” of a stack. 

Also, for functional languages, not technically correct. 

Anyway, draw them whichever way you want. 
I will draw them right-side up.

A note about stack diagrams

main x

call stack

car x

cdr x

cons x y

cons x ymain x

call stack

car x

cdr x

cons x y

cons x y

Mitchell me

Blocks

•What is a “block”? 

•Not the same “block” as in “block structured 

language”! 

•A block denotes scope. 

•You’ve seen them before. 
 public static void main(String[] args) { 

    // code inside block 
  }

Blocks

public static void main(String[] args) { 

  return x; 
}

•What kind of variable is x? 

•x “is global to” the scope of main.



Scope

•A variable is a binding of a value to a name. 

•Scope is the region of a computer program 

where a variable binding is valid.

public static void main(String[] args) { 

  return x; 
}

class Program { 

  static int x = 5;

}

Block Scope

•A block is therefore a region associated with 

variable bindings. 

•This is valid (although not very useful) C:

{ int x = 5; 

  { int y = 6; 

    { int z = x + y + 7; } 

  } 

}

•Scopes are tracked on the runtime call stack.

Block Scope Evaluation

{ int x = 5; 

  { int y = 6; 

    { int z = x + y + 7; } 

  } 

}

call stack

Start block 1:

End block 1:

Start block 2:

End block 2:

Start block 3: End block 3:

x = 5Block 1:

y = 6Block 2:

z = x + y + 7Block 3:

•z is local to block 3; x and y are global to block 3.

Scoping Rules
val x = 5 

fun f y = x + y 

fun g () = 

  let val x = 6 in 

    f 7 

  end 

g ()

•Show of hands: 

•Option 1: result is 13 

•Option 2: result is 12 lexical (static) scope

dynamic scope



val x = 5 

fun f y = x + y 

fun g () = 

  let val x = 6 in 

    f 7 

  end 

g ()

Dynamic Scope

Scope of f’s variable x is where f is used.

val x = 5 

fun f y = x + y 

fun g () = 

  let val x = 6 in 

    f 7 

  end 

g ()

Lexical (Static) Scope

Scope of f’ variable x is where f is defined.

Dynamic vs Lexical Scope

•Dynamic scope is very confusing for 

programmers. 

•LISP originally had dynamic scope. 

•Scheme introduced lexical scope into LISP; 

Common LISP did the same. 

•Some modern languages still make this 

mistake! (e.g., R; demo)

Lexical Scope Rules Are Simple

{ int x = 5; 

  { int y = 6; 

    { int z = x + y + 7; } 

  } 

}

call stack

x = 5Block 1:

y = 6Block 2:

z = x + y + 7Block 3:

Start block 1:

End block 1:

Start block 2:

End block 2:

Start block 3: End block 3:

• When resolving the value of a variable, start search locally, 
then traverse up the call stack.



Lexical Scope Rules Are Simple

•Some languages (mostly functional ones) maintain explicit 

“control link” pointers to previous stack frames.

call stack

x = 5 
CL = …Block 1:

y = 6 
CL =

Block 2:

z = x + y + 7 
CL =Block 3:

• (You’ll see why a bit later)

First Class Functions
• A language with first-class functions treats functions no 

differently than any other value: 

• You can assign functions to variables: 
val f = fn x => x + 1 

• You can pass functions as arguments: 
fun g h = h 3  
g f 

• You can return functions: 
fun k x = fn () => x + 3 

• First-class function support complicates 

implementation of lexical scope.

First Class Functions

• To implement support for first class functions, we need 

two additional data structures: 

• Access links 

• Closures 

• The implementation difficulty of maintaining lexical 

scope for first class function is called the funarg 

problem. 

• Scheme was the first language to fix it. 

• This difficulty was why LISP had dynamic scope!

Access link

• An access link is a pointer from the current activation 

record to the activation record of the closest lexical 

scope.

• In other words, the access link in the activation frame 

for a function f points to where f was defined.



Closure

• A closure is a tuple that represents a function value. One 

tuple value points to a function’s code and the other 

value points to the activation record of the point of 

definition of the function (i.e., closest lexical scope).

Example

val x = 4 

fun f y = x * y 

fun g h = let val x = 7 in (h 3) + x 

g f

Blocks Define Activation Records

call stack

x = 4

val x = 4 
fun f y = x * y 
fun g h = let val x = 7 in (h 3) + x 
g f

Blocks Define Activation Records

call stack

x = 4

val x = 4 
fun f y = x * y 
fun g h = let val x = 7 in (h 3) + x 
g f

f = 
AL = f



Desugared fun Bindings

let val x = 4 in 

  let f = fn y => x * 4 in 

    let g = 

   fn h => let val x = 7 in (h 3) + x in 

       g f 

    end  
  end 

end

Blocks Define Activation Records

call stack

x = 4

val x = 4 
fun f y = x * y 
fun g h = let val x = 7 in (h 3) + x 
g f

f = 
AL = f

g = 
AL =

Blocks Define Activation Records

call stack

x = 4

val x = 4 
fun f y = x * y 
fun g h = let val x = 7 in (h 3) + x 
g f

f = 
AL = f

g = 
AL = g

Blocks Define Activation Records

call stack

x = 4

val x = 4 
fun f y = x * y 
fun g h = let val x = 7 in (h 3) + x 
g f

f = 
AL = f

g = 
AL = f

h = 
x = 7 
AL =

g f



Blocks Define Activation Records

call stack

x = 4

val x = 4 
fun f y = x * y 
fun g h = let val x = 7 in (h 3) + x 
g f

f = 
AL = f

g = 
AL = f

h = 
x = 7 
AL =

y = 3 
x = 
AL =

AL.x

g f

h 3

Blocks Define Activation Records

call stack

x = 4

val x = 4 
fun f y = x * y 
fun g h = let val x = 7 in (h 3) + x 
g f

f = 
AL = f

g = 
AL = f

h = 
x = 7 
AL =

y = 3 
x = 
AL =

AL.x

g f

h 3 x = ?

Blocks Define Activation Records

call stack

x = 4

val x = 4 
fun f y = x * y 
fun g h = let val x = 7 in (h 3) + x 
g f

f = 
AL = f

g = 
AL = f

h = 
x = 7 
AL =

y = 3 
x = 
AL =

AL.x

g f

h 3 x = 4

Activation Records in Functional Langs

let val g = 
  let 
    val x = 1 
    fun f () = x + 1 
  in 
    f 
  end 
in 
  g() 
end

How is this function evaluated?  Do we 
have a problem when we call g()?



Upward funargs

call stack

g = 
AL = …

let val g = 
    let val x = 1 

               fun f () = x + 1 
in f end 
in g() end

1. Push let block for g onto call 
stack. We don’t yet know g’s value.

Upward funargs

call stack

g = 
AL = …

let val g = 
    let val x = 1 

               fun f () = x + 1 
in f end 
in g() end

x = 1 
f = 
AL = 
CL = f

1. Push let block for g onto call 
stack. We don’t yet know g’s value. 

2. Push let block for x and f.

Upward funargs

call stack

g = 
AL = …

let val g = 
    let val x = 1 

               fun f () = x + 1 
in f end 
in g() end

f???

1. Push let block for g onto call 
stack. We don’t yet know g’s value. 

2. Push let block for x and f. 
3. Return f. We have a problem!

Upward funargs

heap-allocated records

g = 
AL = …

let val g = 
    let val x = 1 

               fun f () = x + 1 
in f end 
in g() end

1. Push let block for g onto call 
stack. We don’t yet know g’s value. 

2. Push let block for x and f. 
3. Return f. We have a problem! 
4. The fix is delay deallocating record 

until we are done using it.  Instead 
of using stack, just heap allocate 
frames and use garbage collector!

f

x = 1 
f = 
AL = 
CL =



Upward funargs

heap-allocated records

g = 
AL = …

let val g = 
    let val x = 1 

               fun f () = x + 1 
in f end 
in g() end

1. Push let block for g onto call 
stack. We don’t yet know g’s value. 

2. Push let block for x and f. 
3. Return f. We have a problem! 
4. The fix is delay deallocating record 

until we are done using it.  Instead 
of using stack, just heap allocate 
frames and use garbage collector! 
 
 

5. Now we can call g() and it will 
work correctly.

f

x = 1 
f = 
AL = 
CL =

AL = 
CL =g()


