
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 11: Control Structures II

Computer Architecture
(a really really fast introduction)

Memory

…0 0 0 0 0 0 0

{

1 byte

main memory (typically GB worth)

registers (typically 32 to 512 bytes)

0 0 0 0{

1 byte

slow

fast

Instructions

add x y
sub x y
jmp x
and x y
or x y
not x
mov x y
…

add x to y, store in x
subtract y from x, store in x
jump to location x
logical and, store in x
logical or, store in x
logical not, store in x
copy memory from y into x
…

L1:
.asciz “/bin/sh”
push ebp
mov ebp, esp
sub esp, 8
mov ebx, OFFSET FLAT:L1
mov DWORD PTR [ebp-8], ebx
mov DWORD PTR [ebp-4], 0
mov eax, 11
lea ecx, DWORD PTR [ebp-8]
mov edx, 0
int 0x80
leave
ret

Sample x86 Assembly Program BASIC
(Beginner’s All-purpose Symbolic Instruction Code)

• Invented in 1964 at Dartmouth College

• Implemented by undergrads!

• An “unstructured” programming language

• Inspired by FORTRAN (and similar in spirit)

• Intentionally simplified in order to appeal to beginners.

• As powerful as any other language (Turing complete).

• Wildly popular

Activity

• Write a Java/Python/pseudocode program that…

• Asks user for their name.

• Greets them with “Hello <name>”

• Asks them how many stars (‘*’) to print.

• Prints n stars

• Asks the user if they want more stars

• If yes, asks them for m more prints n+m, and asks

again.

• Otherwise, quits.

Activity
10 INPUT "What is your name: "; U$
20 PRINT "Hello "; U$
30 INPUT "How many stars do you want: "; N
40 S$ = ""
50 FOR I = 1 TO N
60 S$ = S$ + "*"
70 NEXT I
80 PRINT S$
90 INPUT "Do you want more stars? "; A$
100 IF LEN(A$) = 0 THEN GOTO 90
110 A$ = LEFT$(A$, 1)
120 IF A$ <> "Y" AND A$ <> "y" THEN GOTO 160
130 INPUT "How many more stars? "; M
140 N = N + M
150 GOTO 40
160 PRINT "Goodbye "; U$
170 QUIT

Structured Programming

• Coined by Edsger Dijkstra

• “GOTO Statement Considered

Harmful”

• Argued that GOTO made

programming much harder to

understand.

• “the quality of programmers is

a decreasing function of the

density of GOTO statements in

the programs they produce.”

(aside)

http://www.malevole.com/mv/misc/killerquiz/

Dijkstra’s argument

You have to debug this program.
How much information do you need to keep in

your head?

Basically just a pointer.

10 A = 1
20 B = 2
30 C = 3
40 D = 4
50 QUIT

10 A = 1
20 B = 2
30 C = 3
40 D = 4
50 FOR I = 1 TO D
60 E = D
70 NEXT I
80 QUIT

Dijkstra’s argument

Add a loop.

A little harder.

Need to remember a loop counter.
(The rest you can determine by induction.)

10 A = 1
20 B = 2
30 C = 3
40 D = 4
50 FOR I = 1 TO D
60 E = D
70 NEXT I
80 IF N < 10 THEN
90 D = 10
100 ELSE
110 D = 20
140 END IF
150 QUIT

Dijkstra’s argument

Add a conditional.

Don’t need to remember anything new.

Dijkstra’s argument

Add a GOTO.

10 A = 1
20 B = 2
30 C = 3
40 D = 4
50 FOR I = 1 TO D
60 E = D
70 NEXT I
80 IF N < 10 THEN
90 D = 10
100 GOTO 50
100 ELSE
110 D = 20
140 END IF
150 QUIT

Need to remember 
all program values that might be updated.

Block Structured Programming

Only 3 building blocks for programs.

statement

…

sequence

conditional

true false

… …

conditional

statement

conditional

true false

…

loop

No GOTOs.

Block Structured Programming

Only 3 building blocks for programs.

statement

…

conditional

true false

… … statement

conditional

true false

…

sequence conditional loop

Structured Program Theorem: Blocks are Turing-complete

Structured programs can be evaluated
using a call stack

main x

call stack

car x

cdr x

cons x y

cons x y

Stacks are made out of activation records

main x

call stack

car x

cdr x

cons x y

cons x y

} activation record

Stacks are used to track…

1.which function is being executed now,

2.the parameters to that function,

3.the local variables used in that function,

4.temporary results needed along the way,

5.where to return when done,

6.where to put the result when done,

7.where to find non-local variables (optional)

main x

call stack

car x

cdr x

cons x y

cons x y

Those parts are named…

1.which function:

2.parameters:

3.local variables:

4.temporary results:

5.where to return:

6.where to ret. result:

7.non-local variables:

main x

call stack

car x

cdr x

cons x y

cons x y

top of the stack

actual parameters

local variables

temporary storage

control link

return result address

access link

Translation for C hackers…

main x

call stack

car x

cdr x

cons x y

cons x y

activation record = stack frame

top of the stack = top of the stack

actual parameters = function parameters

local variables = local variables

temporary storage = local variables

control link = frame pointer

return result address = EAX

access link = does not exist in C!

What can a function return?

What can a function return?
Stack frame layout

local vars

parameters

return-result

return

control link

intermediates

access link

Activity

fun f x y = g x + g y

fun g x = x + 1

f 1 1

