
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 10: Control Structures I

Announcements

Graded HW2 back (except late assignments)

Announcements

HW2

Announcements

Graded HW3 back this week

Announcements

Graded HW3 back this week

Hopefully HW4 early next week

Announcements

Midterm Exam: Thurs, March 15

Mitchell Ch. 1-7

All material covered on homework

Announcements

Midterm Exam Review:

Outside of class

Probably Tuesday, March 13 at 4pm

Location TBD

Announcements

HW5 last homework before Spring Break.

Homework help session:

Thursday, March 8, 7-9 in TCL 206

No homework help session:

Thursday, March 15

Type Inference

Clever Uses for Types 2,300 transistors

Intel 4004  
(1971)

Intel 8086
(1978)

50,000 transistors

Intel Pentium 4
(2000)

50,000,000 transistors

1968 1973 1979 1984 1990 1995 2001 2006

1000 MHz

1 MHz

10 MHz

100 MHz

Processor Clock Speeds

12

Intel Core i7 (2010)

2,000,000,000 transistors

Multi-Core Chips

core
#1

core
#2

CPU

core
#3

core
#4

Concurrent Programming With Threads

Thread 1

Thread 2

data

Amazon.com

network

Concurrent Programming With Threads

Thread 3

Thread 4

Bank
Server

Multithreaded Program Execution

Thread A  
...  
t1 = bal;  
bal = t1 + 100;  
...

Thread B  
...  
t2 = bal;  
bal = t2 – 100;  
...

t1 = bal

500

bal = t1+100

t2 = bal

600

bal = t2-100

Thread A  
...  
t1 = bal;  
bal = t1 + 100;  
...

Thread B  
...  
t2 = bal;  
bal = t2 – 100;  
...

t1 = bal

bal = t1+100

t2 = bal

bal = t2-100

t1 = bal

500

t2 = bal

500

bal = t1+100

600

bal = t2-100

400

bal is 500 bal is 400

Multithreaded Program Execution Race Condition

Thread A  
...  
t1 = bal;  
bal = t1 + 100;  
...

Thread B  
...  
t2 = bal;  
bal = t2 – 100;  
...

t1 = bal

bal = t1+100

t2 = bal

bal = t2-100

t1 = bal

t2 = bal

bal = t1+100

bal = t2-100

bal is 500 bal is 400

Race Condition

A race condition occurs when two or more

concurrent threads:

(1) access the same variable at the same time,

(2) at least one of the threads performs a write

to the variable, and

(3) the order of read/write events can cause

the program to compute different results.

Avoiding Race Conditions

A mutual exclusion barrier (or mutex, or lock) is a

concurrency control structure that prevents

race conditions by limiting the possible thread

interleavings.

Thread A  
acquire(m);  
 t1 = bal;  
 bal = t1 + 100;  
release(m);  

Thread B  
acquire(m);  
 t2 = bal;  
 bal = t2 – 100;  
release(m);

Avoiding Race Conditions

m is a “mutual exclusion lock”

must acquire m
before using bal

Thread A  
acquire(m);  
 t1 = bal;  
 bal = t1 + 100;  
release(m);  

Thread B  
acquire(m);  
 t2 = bal;  
 bal = t2 – 100;  
release(m);

acquire(m)

t1 = bal

bal = t1 + 100

release(m)

acquire(m)

t2 = bal

bal = t2 - 100

release(m)

acquire(m)

t2 = bal

bal = t2 - 100

release(m)

acquire(m)

t1 = bal

bal = t1 + 100

release(m)

bal is 500 bal is 500

Thread Interleavings

Lock downside

Unfortunately, locks are not automatic.

Programmers must identify the regions of

code that must be protected (called a critical

section) and manually insert locks.

Common, Hard to Detect, Costly to Fix

Thread A  
acquire(m);  
 t1 = bal;  
 bal = t1 + 100;  
release(m);  

Thread B  
 
 t2 = bal;  
 bal = t2 – 100;  

acquire(m)

t1 = bal

t2 = bal

release(m)

bal = t1+100

bal = t2-100

bal is 400

Mutex Programming Bug

Thread A  
synchronized(m){  
 t1 = bal;  
 bal = t1 + 100;  
}  

Thread B  
synchronized(m){  
 t2 = bal;  
 bal = t2 – 100;  
}

acquire(m)

t1 = bal

bal = t1 + 100

release(m)

acquire(m)

t2 = bal

bal = t2 - 100

release(m)

acquire(m)

t1 = bal

bal = t1 + 100

release(m)

acquire(m)

t2 = bal

bal = t2 - 100

release(m)

bal is 500 bal is 500 28

Type Inference to Identify Races

Thread 1

synchronized(l) {
 x = 10;
}
synchronized(m) {
 synchronized(l) {
 x = y + 1;
 }
 y = 2;
}

Thread 2

synchronized(m) {
 print y;
}

synchronized(m) {
 print x;
}

Lock Type Inference Steps

1. Get abstract syntax tree

2. Label nodes with type labels

3. Generate constraints

4. Solve constraints

5. Type check: check that use is consistent

Lock Type Inference Constraints

s

l:T e:S

:R

T = R
S = R ∪ {l}

sync:

*

e1:T e2:S

:R

T = R
S = R

other:

root:

R = ∅

lockset:
locki ∈ V

i:V

if R is root

Infer Type

s

l
a = ∅
b = a
c = a ∪ {l}
d = c
e = c
lockx ∈ d

synchronized(l) {
 x = 10;
}

:=

x 10

:a

:b :c

:d :e

a = ∅  
b = a
c = a ∪ {l}
d = c
e = c
lockx ∈ d

Infer Type

a = b = ∅

c = d = e = a ∪ {l} = {l}
lockx ∈ {l}

x has lock type l
i.e., x is guarded by lock l

Activity

What are lock types for x and y?
Are they consistent with previous example?

synchronized(m) {
 synchronized(l) {
 x = y + 1;
 }
 y = 2;
}

Consistency

lockx1 ∈ {l}

lockx2 ∈ {l,m}
locky1 ∈ {l,m}

synchronized(l) {
 x = 10;
}
synchronized(m) {
 synchronized(l) {
 x = y + 1;
 }
 y = 2;
}

locky2 ∈ {m}

lockx1 ∩ lockx2 = {l} locky1 ∩ locky2 = {m}

Lock set for variable should never be empty!

35

Type Inference to Identify Races

Thread 1

synchronized(l) {
 x = 10;
}
synchronized(m) {
 synchronized(l) {
 x = y + 1;
 }
 y = 2;
}

Thread 2

synchronized(m) {
 print y;
}

synchronized(m) {
 print x;
}

{l}

{l,m}

{l,m}

{m}

{m}

{m}

What’s the problem here?

Call Stack

A call stack is a control structure that stores

information about the active subroutines of a

program.

Most programming language runtimes use a

call stack to evaluate a program instead of

evaluation-by-substitution (i.e., λ-calculus

reductions).

GC example from HW2

(car (cdr (cons (cons a b) (cons c b))))

GC example from HW2

(car (cdr (cons (cons a b) (cons c b))))

main x

call stack

a b c d

GC example from HW2

(car (cdr (cons (cons a b) (cons c b))))

main x

call stack

car x

a b c d

GC example from HW2

(car (cdr (cons (cons a b) (cons c b))))

main x

call stack

car x

cdr x

a b c d

GC example from HW2

(car (cdr (cons (cons a b) (cons c b))))

main x

call stack

car x

cdr x

cons x y

a b c d

GC example from HW2

(car (cdr (cons (cons a b) (cons c b))))

main x

call stack

car x

cdr x

cons x y

cons x y

a b c d

GC example from HW2

(car (cdr (cons (cons a b) (cons c b))))

main x

call stack

car x

cdr x

cons x y

a b c d

GC example from HW2

(car (cdr (cons (cons a b) (cons c b))))

main x

call stack

car x

cdr x

cons x y

a b c d

cons x y

GC example from HW2

(car (cdr (cons (cons a b) (cons c b))))

main x

call stack

car x

cdr x

cons x y

a b c d

GC example from HW2

(car (cdr (cons (cons a b) (cons c b))))

main x

call stack

car x

cdr x

cons x y

a b c d

GC example from HW2

(car (cdr (cons (cons a b) (cons c b))))

main x

call stack

car x

cdr x

a b c d

GC example from HW2

(car (cdr (cons (cons a b) (cons c b))))

main x

call stack

car x

a b c d

GC example from HW2

(car (cdr (cons (cons a b) (cons c b))))

main x

call stack

a b c d

GC example from HW2

(car (cdr (cons (cons a b) (cons c b))))

main x

call stack

a b c d

Which objects  
are garbage?

