CSCl 334:
Principles of Programming Languages

| ecture 10; Control Structures |

Instructor: Dan Barowy
Williams

Announcements

Graded HW?2 back (except late assignments)

Announcements

-

H\W/2

Announcements

Graded HW3 back this week

Announcements

Graded HW3 back this week
Hopefully HW4 early next week

Announcements

Midterm Exam: Thurs, March 15
Mitchell Ch. 1-7

All material covered on homework

Announcements

Midterm Exam Review:
Outside of class
Probably Tuesday, March 13 at 4pm
Location TBD

Announcements

H\W/5 last homework before Spring Break.
Homework help session:
Thursday, March 8, 7-9 in TCL 206
No homework help session:

Thursday, March 15

Intel 4004 Intel 8086 Intel Pentium 4
Type Inference (1971) (1978) (2000)

Clever Uses for Types 2,300 transistors 50,000 transistors 50,000,000 transistors

E B | i]

Processor Clock Speeds

i

|

Pentium4 Prescott 104 L !

| payy Yonah 4 core 1737701
After 2003, 3.06 GHz — >
1000 MHz ,/:::;-;:.:e = % Z '1“‘/“,-3‘ .“w. .a’n‘m?:m:x]
PentiumIil E 1000+ re— 1
£ (3 E
Celeron § = Psksfs“fs/ .. L2 1
100 MHz Pentium ‘§, 2 2 i o ®
% 100l P & £ soagenk P 0X2 @ :
80486 E i1 3 m“s: b 7 3
80386 19} = ® *—g & rom
E 16bit 8086 | ' Gortest.
10 MHz I 8085 3 J
80286 g A 8080 ®e o 3
P\
8080 g s o T
1 MHz 1
e ' ‘ ‘ ' ' ' °
1973 1979 1984 1990 1005 2001 2006]
gl # ¢ P oy o P v g ; | S:Ailku] May 21, 2014

1980 1990 2000 2010 12

Intel Core i7 (2010) Multi-Core Chips

CPU
R
-— core
— #1
—/
Y
<« core
- #2
—/
R
€« core
—> #3
—/
Y
AR core
——
#4
N
2,000,000,000 transistors
Concurrent Programming With Threads Concurrent Programming With Threads

Amazon.com

Thread 1
N~ Thread 2
network _E[I:I:[
/ Thread 3
Thread 4

Online Banking
Take charge of your money with 24/7 access

AN

‘ 7\ Semver

Bank

Multithreaded Program Execution

Thread A

tl = bal;
bal = tl + 100;

Thread B

t2 = bal;
bal = t2 - 100;

Q

o

t1 = ba
6

bal = +1+100
A\ 4

s

t2 = bal

0

bal = +2-100
b 4
O
Multithreaded Program Execution Race Condition
Thread A t1= bal t1 = bal Thread A t1 = bal t1 = bal
tl = bal;) 4) 4 tl = bal;
bal = t1 + 100; Q Q bal = t1 + 100;
e bal = 11+100 12 = bal e bal = 11+100 12 = bal
b 4 v b 4
@, O
Thread B 12 = bal bal = t1+100 Thread B t2 = bal bal = +1+100
... v v .. b 4
t2 = bal; O O @ t2 = bal;
bal = t2 - 100; bal = t2 - 100;
. bal = +2-100 bal = +2-100 . bal = +2-100 bal = +2-100
b 4 b 4 b 4

bal is 500

Race Condition

A race condition occurs when two or more

concurrent threads:

(1) access the same variable at the same time,

(2) at least one of the threads performs a write

to the variable, and

(3) the order of read/write events can cause

the program to compute different results.

Avoiding Race Conditions

A mutual exclusion barrier (or mutex, or lock) is a

concurrency control structure that prevents

race conditions by limiting the possible thread

interleavings.

Avoiding Race Conditions

Thread A
acquire (m) ;
tl = bal;

release (m) ;

bal = t1 + 100;

Thread B 4
acquire (m) ;
t2 = bal;

release (m) ;

bal = t2 - 100;

~

_-mis a ‘'mutual exclusion lock”

must acquire m
before using bal

Thread Interleavings ?a
cquire(m)

Thread A
acquire (m) ;
tl = bal;

release (m) ;

bal = t1 + 100;

Thread B
acquire (m) ;
t2 = bal;

release (m) ;

bal = t2 - 100;

oo

O
Jpal 11+ 100
O

release(m)
cquire(m)

2 = bal

aal t2 - 100
i-elease(m)

bal is 500

-

acquire(m)

Q
bal is 500

Lock downside

Unfortunately, locks are not automatic.
Programmers must identify the regions of
code that must be protected (called a critical

section) and manually insert locks.

Mutex Programming Bug

ilcquir'e(m)
Thread A O
acquire (m) ; -
tl = bal; 1= bal
bal = t1 + 100;
release (m) ; t2 = bal
al = +1+100
Thread B al = 12-100
t2 = bal; elease(m)
bal = t2 - 100; O
bal is 400

Common, Hard to Detect, Costly to Fix

ilcquire(m) acquire(m)
Thread A ? -
synchronized (m) { ()ﬂ bal
tl = bal;
bal = t1 + 100; Jpal = 11+ 100
} O
i;elease(m)
cquire(m)
Thread B
synchronized (m) { 2 = bal
t2 = bal;
bal = t2 - 100; al = 2 - 100

}

<O

elease(m)

Q
bal is 500

Type Inference to Identify Races

Thread 1 Thread 2

synchronized (1) { synchronized (m)

x = 10; print vy;

} }
synchronized (m) { synchronized (m)
synchronized (1) { print x;
}

x =y + 1;

}
y = 2;

28

Lock Type Inference Steps Lock Type Inference Constraints
@ :R if R is root
1. Get abstract syntax tree sync l:T/ \e:S root:
. T =R
2. Label nodes with type labels s RuU (1) R=0
3. Generate constraints
4. Solve constraints @ .
. Type check: check that use is consistent 7N LV
5 Typ other; e1:r e2:s|lockset:
T =R lock; € V
S =R
Infer Type Infer Type
synchronized (1) { D -
X = 10,‘ b = a
} @:a c=au (1) a=>b =20
/ \ _ c=d=e=auU {1} = {1}
1%p @:c 2:2 locks € {1}

a=9 TN\ locks € d

b=a x :d 10 :e

c=au {1}

d =c

e =c x has lock type 1

locky € d le., x is guarded by lock 1

Activity

synchronized (m) {
synchronized (1) {
x =y + 1;

}
y = 2;
}

What are lock types for x and y?
Are they consistent with previous example?

Consistency

synchronized (1) {
x = 10;
}

synchronized (m) {

locky: € {1}

synchronized (1) { lockx, € {1,m}
x =y + 1; locky:r € {1,m}

}

y = 2; locky> € {m}

lockxi N lockxz = {1} lockyr N lockys = {m}

Lock set for variable should never be empty!

Type Inference to Identify Races

Thread 1 Thread 2

synchronized (1) { synchronized (m) {
X = 10,‘ %{L) print Y {m}

} }

synchronized (m) {

synchronized (m) {

synchronized (1) { print x; {m}
{1,m }
o)F> x =y + 1;

}
y = 2;

What's the problem here? 3

Call Stack

A call stack is a control structure that stores
information about the active subroutines of a

program.

Most programming language runtimes use a
call stack to evaluate a program instead of
evaluation-by-substitution (i.e., A-calculus

reductions).

GC example from HW?2

(car (cdr (cons (cons a b) (cons ¢ b))))

t

GC example from HW?2

(car (cdr (cons (a b) (c b))))

main x

call stack

GC example from HW?2

(car (cdr (cons (a b) (c b))))

t

car X

main x

call stack

GC example from HW?2

(car (cdr (cons (a b) (c b))))

t

main x

call stack

GC example from HW?2

(car (cdr (cons (a b) (c b))))
T a b c d
cons x y
cdr x
call stack

GC example from HW?2

(car (cdr (cons (a b) (c b))))

! ;

cons x y

cdr x

car X

main x

call stack

GC example from HW?2

(car (cdr (cons (a b) (c b))))

L

A‘—————__,——?

cons x"y

main x

call stack

GC example from HW?2

(car (cdr (cons (a b) (c b))))

cons x7y \ ‘

cdr x

car X

main x

call stack

GC example from HW?2

(car (cdr (cons (a b) (c b))))

t

(o}

A——”’——————'

Q
o]
B
0
b
=
—
—

main x

call stack

GC example from HW?2

(car (cdr (cons (a b) (c b))))
T i T C d
R
A,—"———————" \\
cons x7y /f — \
car x / //

call stack

GC example from HW?2

(car (cdr (cons (a b) (c b))))

t

R
cdr %] /
car x /(—“—’,——”"’)'

main x

call stack

GC example from HW?2

(car (cdr (cons (a b) (

t -
i

c d

c b))))

—

/#}

car X ="
71 A

main x

call stack

t

GC example from HW?2

(car (cdr (cons (a b) (

main x

call stack

t

GC example from HW?2

(car (cdr (cons (a b) (

\Which objects
are garbage?

main x

call stack

