
CSCI 334: 
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 8: Types I

Announcements

We will go over map and fold activities from last 

Thursday during the next class.

algebraic datatypes

datatype treat = 
  SNICKERS 
| TWIX 
| TOOTSIE_ROLL  
| DENTAL_FLOSS

• Each option is really a constructor in disguise. 
• Those constructors can take parameters.

algebraic datatypes

datatype bag_o_treats = 
  SNICKERS of int 
| TWIX of int 
| TOOTSIE_ROLL of int  
| DENTAL_FLOSS of int

• ADTs are known as “disjoint unions” in SML 
(or “tagged unions”, or “discriminated unions”, 
or “variant”, or “choice type”, or “sum type”, …)

• Each option is really a constructor in disguise. 
• Those constructors can take parameters.



pattern matching ADTs with params

fun count_treats bag = 
  case of bag 
  SNICKERS     i => i 
| TWIX         i => i 
| TOOTSIE_ROLL i => i  
| DENTAL_FLOSS i => i

pattern matching ADTs with params

fun count_treats (SNICKERS i)     = i 
 |  count_treats (TWIX i)         = i 
 |  count_treats (TOOTSIE_ROLL i) = i  
 |  count_treats (DENTAL_FLOSS i) = i

or just…

type checking is exhaustive for ADTs

datatype Expr =  
  Foo of int  
| Bar of real  
| Baz of string  

fun eval (Foo f) = "foo " ^ (Int.toString f)  
 |  eval (Baz b) = "baz " ^ b 

stdIn:16.5-17.30 Warning: match nonexhaustive 
          Foo f => ... 
          Baz b => ...

(this is occasionally exhausting for humans)

type checking is exhaustive for ADTs

exception NotDoneYet 
fun TODO() = raise NotDoneYet  

datatype Expr =  
  Foo of int  
| Bar of real  
| Baz of string  

fun eval (Foo f) = "foo " ^ (Int.toString f)  
 |  eval (Baz b) = "baz " ^ b 
 |  eval (Bar b) = TODO()

a nice trick to make warnings go away…

(it does, however, now cause a dynamic error instead; use sparingly!)



type checking

fun f(x:int) : int = “hello ” + x

(or, “how does ML know that my expression is wrong?”)

stdIn:27.12-27.24 Error: operator and operand don't 
agree [overload conflict] 
  operator domain: [+ ty] * [+ ty] 
  operand:         string * int 
  in expression: 
    "hello " + x 

type checking

fun f(x:int) : int = “hello ” + x 

f = λx.“hello ” + x 

f = λx.((+ “hello ”) x)

convert into λ expression

assume + = λx.λy.[[x + y]]

step 1: convert into lambda form

The purpose of this step is to make all of the parts 
of an expression clear 

(real compilers may/may not actually do this step)

type checking

f = λx.((+ “hello ”) x) 

f has form λx.((MM)M)

step 2: generate parse tree

λ

@

@

x

x

+ “hello ”

type checking

read “:” as “has type”

step 3: label parse tree with types

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int:int

:int → int

:int → int



type checking

step 4: check that types are used consistently

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int

:int → int

:int

1. Start at the leaves 

2. Do type mismatches arise? 
Yes = type error 
No = type safe 

3. if yes, stop and 
report first 
mismatch

int → int → int @ string 

YES, TYPE ERROR

:int → int

type inference

notice that we had a typed expression

fun f(x:int) : int = “hello ” + x

what if, instead, we had

fun f(x) = “hello ” + x

?

Hinley-Milner algorithm

J. Roger Hindley Robin Milner

• Hindley and Milner 
invented algorithm 
independently. 

• Infers types from known 
data types and 
operations used. 

• Depends on a step 
called “unification”. 

• I will demonstrate 
informal method for 
unification; works for 
small examples

Hinley-Milner algorithm

1. Assign type to each expression and subexpression 

2. Generate type constraints based on rules of λ calculus: 

a. Abstraction constraints 

b. Application constraints 

3. Solve type constraints using unification.

Has three main phases:



type inference

fun f(x) = 5 + x 

f = λx.((+ 5) x)

step 1: label parse tree with known/unknown types

λ

@

@

x

x

+ 5
:int → int → int

:int

:r :s

:t

:u

:s

I am using the example 
from book so that you 

can follow along at home!

type inference

it is often helpful to have types in tabular form

subexpression type

+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r 
s 
t 
u

type inference

step 2: generate type constraints using λ calculus

Abstraction rule: If the type of x is a and the type of M is b, and the 
type of λx.M is c, then the constraint is c = a → b.

M ::= x 

  |  λx.M 

  |  MM

variable

function application

abstraction

Application rule: If the type of M1 is a and the type of M2 is b, and 
the type of M1M2 is c, then the constraint is a = b → c.

type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r 
s 
t 
u

constraint
n/a 
n/a 
int → int → int = int → r 
n/a 
r = s → t 
u = s → t



type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r 
s 
t 
u

constraint
n/a 
n/a 
int → int → int = int → r 
n/a 
r = s → t 
u = s → t

step 3: unify

Start with the topmost unknown.  What do we know about r?
int → int → int = int → r 
r = int → int

type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s 
t 
u

constraint
n/a 
n/a 
int → int → int = int → r 
n/a 
int → int = s → t 
u = s → t

step 3: unify

What do we know about s and t?

int → int = s → t 
s = int 
r = int

type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s = int 
t = int 
u

constraint
n/a 
n/a 
int → int → int = int → r 
n/a 
int → int = s → t 
u = int → int

step 3: unify

What do we know about u?

u = int → int s = int 
u = int → int

type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s = int 
t = int 
u = int → int

constraint
n/a 
n/a 
int → int → int = int → r 
n/a 
int → int = s → t 
u = int → int

step 3: unify

Done when there is nothing left to do

(we will talk about polymorphic type inference next class)



completed type inference

fun f(x) = 5 + x 

f = λx.((+ 5) x)

λ

@

@

x

x

+ 5
:int → int → int

:int

:int → int
:int

:int

:int → int

:int


