CSCl 334:
Principles of Programming Languages

Lecture 8: Types |

Instructor: Dan Barowy
Williams

Announcements

We will go over map and fold activities from last

Thursday during the next class.

algebraic datatypes

datatype treat =
SNICKERS

| TWIX

| TOOTSIE ROLL

| DENTAL FLOSS

» Each option is really a constructor in disguise.
» Those constructors can take parameters,

algebraic datatypes

datatype bag o treats =
SNICKERS of int

| TWIX of int

| TOOTSIE ROLL of int

| DENTAL FLOSS of int

» Each option is really a constructor in disguise.

» Those constructors can take parameters,

» ADTs are known as “disjoint unions” in SML
(or "tagged unions’, or “discriminated unions’,
or “variant’, or “‘choice type’, or 'sum type”, .)




pattern matching ADTs with params pattern matching ADTs with params
or just..
fun count treats bag =
case of bag fun count treats (SNICKERS 1) = 1i
SNICKERS i => 1 | count treats (TWIX 1) = 1
| TWIX i => 1 | count treats (TOOTSIE ROLL 1) = 1
| TOOTSIE ROLL i => i | count treats (DENTAL FLOSS 1) = 1
| DENTAL FLOSS i => 1
type checking is exhaustive for ADTs type checking is exhaustive for ADTs
(this is occasionally exhausting for humans) a nice trick to make warnings go away..
datatype Expr = exception NotDoneYet
Foo of int . fun TODO() = raise NotDoneYet
| Bar of real ]
| Baz of string datatype Expr =
Foo of int
fun eval (Foo f) = "foo " ~ (Int.toString f) | Bar of rea}
‘ eval (Baz b) = "baz " ~ b | Baz of strlng
fun eval (Foo f) = "foo " ~ (Int.toString f)
stdIn:16.5-17.30 Warning: match nonexhaustive bgval. (Baz.R). .= 02z "0 D
Foo f => ... | eval (Bar b) = ToDO() §
Baz b => ...
(it does, however, now cause a dynamic error instead; use sparingly!)




type checking type checking

(or, "how does ML know that my expression is wrong?’)
step 1. convert into lambda form

fun f(x:int) : int = “hello ” + x
fun f(x:int) : int = “hello ” + x
f = Ax.“hello ” + x convert into A expression
stdIn:27.12-27.24 Error: operator and operand don't
agree [overload conflict] f = Ax. ((+ “hello ") x) assume + = Ax.Ay.[[x + y]]
operator domain: [+ ty] * [+ ty]
operand: string * int . .
in expression: The purpose of this step is to make all of the parts
"hello " + x of an expression clear
(real compilers may/may not actually do this step)
type checking type checking
step 2: generate parse tree step 3: label parse tree with types

f = Ax. ((+ “hello ”) x) read ":" as "has type’

f hasform Ax. ( (MM)M)

:int - int - int




type checking

step 4. check that types are used consistently
1. Start at the leaves

) . int - int - int @ string
2. Do type mismatches arise?
YES, TYPE ERROR

Yes = type error e _

No - type safe sint Hmt
3. ifyes, stopand /. T\

report first S

mismatch % int

:int - int

/. \“hello "

:string

type inference

notice that we had a typed expression

fun f(x:int) : int = “hello ” + x

what if, instead, we had

fun f(x) = “hello ” + x

?

Hindley and Milner
invented algorithm
independently.

« Infers types from known
data types and
operations used.

* Depends on a step
called “unification”

4 + |will demonstrate IR - /{ﬁ.
informal method for ST
J. Roger Hindley unification; works for Robin Milner

small examples

Hinley-Milner algorithm

Has three main phases:

1. Assign type to each expression and subexpression

2. Generate type constraints based on rules of A calculus:
a. Abstraction constraints
b. Application constraints

3. Solve type constraints using unification.




type inference

step 1. label parse tree with known/unknown types

/*fun f(x) =5 + x

T am using the example
from book so that you
can follow along at homel!

:int - int - int

type inference

it is often helpful to have types in tabular form

subexpression type
+ int - int - int
5 int
(+5) T
X S
(+5) x t
Ax. ((+ 5) x) u

type inference

step 2: generate type constraints using A calculus

M ::= X variable
| Ax.M abstraction
| MM function application

Abstraction rule: If the type of x is a and the type of M is b, and the
type of Ax.Mis ¢, then the constraintisc = a — b.

Application rule: If the type of M; is a and the type of M is b, and
the type of M1M; is ¢, then the constraintisa = b - c.

type inference

subexpression type constraint
+ int - int - int n/a
5 int n/a
(+5) r int - int - int = int - r
x s n/a
(+5) x t r=s-+t
Ax. ((+ 5) x) u u=so-t




type inference

step 3: unify
subexpression type constraint
+ int - int - int n/a
5 int n/a
(+5) r int - int - int = int - r
X s n/a
(+5) x t r=s -t
AX. ((+ 5) x) u u=s -t

Start with the topmost unknown. What do we know about r?

int - int - int = int - r
r = int - int

type inference

step 3: unify
subexpression type constraint
+ int - int - int n/a
5 int n/a
(+5) r = int - int int - int - int = int - r
X S n/a
(+5) x t int > int = s - t
Ax. ((+ 5) x) u u=s -t

What do we know about s and £?

int - int = s - t
s = int
r = int

type inference

step 3: unify
subexpression type constraint
+ int - int - int n/a
5 int n/a
(+5) r = int - int int - int - int = int - r
X s = int n/a
(+5) x t = int int - int = s - t
Ax. ((+ 5) x) u u = int - int

\¥hat do we know about u?

u = int - int s = int
int - int

[
Il

type inference

step 3: unify
subexpression type constraint
+ int - int - int n/a
5 int n/a
(+5) r = int - int int - int - int = int - r
x s = int n/a
(+5)x t = int int - int = s - t
AX. ((+ 5) x) u = int - int u = int - int

Done when there is nothing left to do

(we will talk about polymorphic type inference next class)




completed type inference

:int - int - int




