
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 8: Types I

Announcements

We will go over map and fold activities from last

Thursday during the next class.

algebraic datatypes

datatype treat =
 SNICKERS
| TWIX
| TOOTSIE_ROLL  
| DENTAL_FLOSS

• Each option is really a constructor in disguise.
• Those constructors can take parameters.

algebraic datatypes

datatype bag_o_treats =
 SNICKERS of int
| TWIX of int
| TOOTSIE_ROLL of int  
| DENTAL_FLOSS of int

• ADTs are known as “disjoint unions” in SML 
(or “tagged unions”, or “discriminated unions”, 
or “variant”, or “choice type”, or “sum type”, …)

• Each option is really a constructor in disguise.
• Those constructors can take parameters.

pattern matching ADTs with params

fun count_treats bag =
 case of bag
 SNICKERS i => i
| TWIX i => i
| TOOTSIE_ROLL i => i  
| DENTAL_FLOSS i => i

pattern matching ADTs with params

fun count_treats (SNICKERS i) = i
 | count_treats (TWIX i) = i
 | count_treats (TOOTSIE_ROLL i) = i  
 | count_treats (DENTAL_FLOSS i) = i

or just…

type checking is exhaustive for ADTs

datatype Expr =
 Foo of int
| Bar of real
| Baz of string

fun eval (Foo f) = "foo " ^ (Int.toString f)
 | eval (Baz b) = "baz " ^ b

stdIn:16.5-17.30 Warning: match nonexhaustive
 Foo f => ...
 Baz b => ...

(this is occasionally exhausting for humans)

type checking is exhaustive for ADTs

exception NotDoneYet
fun TODO() = raise NotDoneYet

datatype Expr =
 Foo of int
| Bar of real
| Baz of string

fun eval (Foo f) = "foo " ^ (Int.toString f)
 | eval (Baz b) = "baz " ^ b
 | eval (Bar b) = TODO()

a nice trick to make warnings go away…

(it does, however, now cause a dynamic error instead; use sparingly!)

type checking

fun f(x:int) : int = “hello ” + x

(or, “how does ML know that my expression is wrong?”)

stdIn:27.12-27.24 Error: operator and operand don't
agree [overload conflict]
 operator domain: [+ ty] * [+ ty]
 operand: string * int
 in expression:
 "hello " + x

type checking

fun f(x:int) : int = “hello ” + x

f = λx.“hello ” + x

f = λx.((+ “hello ”) x)

convert into λ expression

assume + = λx.λy.[[x + y]]

step 1: convert into lambda form

The purpose of this step is to make all of the parts
of an expression clear

(real compilers may/may not actually do this step)

type checking

f = λx.((+ “hello ”) x)

f has form λx.((MM)M)

step 2: generate parse tree

λ

@

@

x

x

+ “hello ”

type checking

read “:” as “has type”

step 3: label parse tree with types

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int:int

:int → int

:int → int

type checking

step 4: check that types are used consistently

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int

:int → int

:int

1. Start at the leaves

2. Do type mismatches arise? 
Yes = type error 
No = type safe

3. if yes, stop and 
report first 
mismatch

int → int → int @ string

YES, TYPE ERROR

:int → int

type inference

notice that we had a typed expression

fun f(x:int) : int = “hello ” + x

what if, instead, we had

fun f(x) = “hello ” + x

?

Hinley-Milner algorithm

J. Roger Hindley Robin Milner

• Hindley and Milner 
invented algorithm
independently.

• Infers types from known 
data types and
operations used.

• Depends on a step
called “unification”.

• I will demonstrate
informal method for
unification; works for
small examples

Hinley-Milner algorithm

1. Assign type to each expression and subexpression

2. Generate type constraints based on rules of λ calculus:

a. Abstraction constraints

b. Application constraints

3. Solve type constraints using unification.

Has three main phases:

type inference

fun f(x) = 5 + x

f = λx.((+ 5) x)

step 1: label parse tree with known/unknown types

λ

@

@

x

x

+ 5
:int → int → int

:int

:r :s

:t

:u

:s

I am using the example
from book so that you

can follow along at home!

type inference

it is often helpful to have types in tabular form

subexpression type

+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r
s
t
u

type inference

step 2: generate type constraints using λ calculus

Abstraction rule: If the type of x is a and the type of M is b, and the
type of λx.M is c, then the constraint is c = a → b.

M ::= x

 | λx.M

 | MM

variable

function application

abstraction

Application rule: If the type of M1 is a and the type of M2 is b, and
the type of M1M2 is c, then the constraint is a = b → c.

type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r
s
t
u

constraint
n/a
n/a
int → int → int = int → r
n/a
r = s → t
u = s → t

type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r
s
t
u

constraint
n/a
n/a
int → int → int = int → r
n/a
r = s → t
u = s → t

step 3: unify

Start with the topmost unknown. What do we know about r?
int → int → int = int → r
r = int → int

type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s
t
u

constraint
n/a
n/a
int → int → int = int → r
n/a
int → int = s → t
u = s → t

step 3: unify

What do we know about s and t?

int → int = s → t
s = int
r = int

type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u

constraint
n/a
n/a
int → int → int = int → r
n/a
int → int = s → t
u = int → int

step 3: unify

What do we know about u?

u = int → int s = int
u = int → int

type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u = int → int

constraint
n/a
n/a
int → int → int = int → r
n/a
int → int = s → t
u = int → int

step 3: unify

Done when there is nothing left to do

(we will talk about polymorphic type inference next class)

completed type inference

fun f(x) = 5 + x

f = λx.((+ 5) x)

λ

@

@

x

x

+ 5
:int → int → int

:int

:int → int
:int

:int

:int → int

:int

