
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 7: ML III

Announcements

HW1 feedback and grade: look for pull request email

Announcements

Official SML family reference: 
http://sml-family.org

Announcements

Homework help tonight 7-9pm (HERE)

fold

Intuition:

fold left

foldl (fn (x,acc) => acc+x) 0 [1,2,3,4]

acc = 0, [1,2,3,4]

acc = 0+1, [2,3,4]

acc = 1+2, [3,4]

acc = 3+3, [4]

acc 6+4, []

returns acc = 10

fold right

foldr (fn (x,acc) => acc+x) 0 [1,2,3,4]

[1,2,3,4], acc = 0

[1,2,3], acc = 0+4

[1,2], acc = 4+3

[1] acc = 7+2

[], acc = 9+1

returns acc = 10

fold

• Write a function number_in_month that takes a list of dates

(where a date is int*int*int) and an int month and

returns how many dates are in month

• Anyone try this at home?

fun number_in_month dates month =
 foldl (fn ((_,m,_),acc) =>
 acc + (if m = month then 1 else 0)) 0 dates

val number_in_month =  
 fn : ('a * ''b * 'c) list -> ''b -> int

fold

structural recursion → fold it!

(in a nutshell: any problem that recurses on a subset of input)

tree height

Ø

list length

(cdr
 (car
 (cons
 (cons ‘a ‘b)
 (cons ‘c ‘d)
)
)
)

evaluation

pattern matching

fun number_in_month dates month : int =
 foldl (fn ((_,m,_),acc) =>
 acc + (if m = month then 1 else 0)) 0 dates

We’ve used this already. Did you notice?

pattern matching

A pattern is built from

•values,

•constructors,

•and variables

• Tests whether value(s) have shape defined by pattern

• If matches, binds variable(s) in pattern to value(s)

• Write a function get_nth that takes a list of strings and an

int n and returns the nth element of the list, where the

head is 1st.

• Anyone try this at home?

fun get_nth nil n = NONE
 | get_nth (x::xs) 1 = SOME x
 | get_nth (x::xs) n =
 if n > 1 then get_nth xs (n-1) else NONE

val get_nth = fn : 'a list -> int -> 'a option

pattern matching

pattern matching

fun get_nth nil n = NONE
 | get_nth (x::xs) 1 = SOME x
 | get_nth (x::xs) n =
 if n > 1 then get_nth xs (n-1) else NONE

• Another example: handling errors.

• SML has exceptions (like Java)

• But an alternative, easy way to handle many

errors is to use the option type:

datatype 'a option = NONE | SOME of 'a

handling errors with patterns

fun get_nth nil n = NONE
 | get_nth (x::xs) 1 = SOME x
 | get_nth (x::xs) n =
 if n > 1 then get_nth xs (n-1) else NONE

handling errors with patterns

• Why option?

• option is a data type; 

not handling errors is a static type error!

• Wait… isn’t this just the same thing as “checked

exceptions” from Java?

• They are similar but not the same. We’ll talk

more about this in a coming lecture.

option type

- get_nth [1,2,3,4] 3  
val it = SOME 3 : int option

- get_nth [1,2,3,4] 0  
val it = NONE : int option

- get_nth [1,2,3,4] 5  
val it = NONE : int option

handling errors with patterns handling errors with patterns

Let’s handle this error.

val i = … whatever …

val x = get_nth [1,2,3,4] i

case x of

 SOME n => print ((Int.toString n) ^ “\n”)

| NONE => print ((Int.toString i)  
 ^ “ is not a valid index!”)

algebraic datatypes
(pattern matching’s best friend)

datatype 'a option =  
 NONE  
| SOME of 'a

datatype treat =
 SNICKERS
| TWIX
| TOOTSIE_ROLL  
| DENTAL_FLOSS

algebraic datatypes
(pattern matching’s best friend)

fun trick_or_treat SNICKERS = “treat!”
 | trick_or_treat TWIX = “treat!”
 | trick_or_treat TOOTSIE_ROLL = “treat!”
 | trick_or_treat DENTAL_FLOSS = “trick!”

datatype treat =
 SNICKERS
| TWIX
| TOOTSIE_ROLL  
| DENTAL_FLOSS

algebraic datatypes
(pattern matching’s best friend)

fun trick_or_treat t =
 case t of
 SNICKERS => “treat!”
 | TWIX => “treat!”
 | TOOTSIE_ROLL => “treat!”
 | DENTAL_FLOSS => “trick!”

shorthand for case expression:

fun trick_or_treat SNICKERS = “treat!”
 | trick_or_treat TWIX = “treat!”
 | trick_or_treat TOOTSIE_ROLL = “treat!”
 | trick_or_treat DENTAL_FLOSS = “trick!”

Activity

Write a function is_older that takes two dates (where a
date is int*int*int) and returns true or false. It
evaluates to true if and only if the first argument is a date
that comes before the second argument. If the two dates
are the same, return false.

E.g.,
is_older (2018,2,21) (2018,2,22) returns true

Activity

Write a function num_before_sum that takes an int called
sum (assume sum is positive) and an int list (assume all
positive) and returns an int. The return value is an n
such that the sum of the first n elements is < sum and the
sum of the n + 1 elements is >= sum. Assume that the
sum of the entire list > n. Summing goes from left to right.

E.g.,
num_before_sum 3 [0,1,2,3] returns 2

