CSCl 334:
Principles of Programming Languages

Lecture 72 ML I

Instructor: Dan Barowy
Williams

Announcements

HW1 feedback and grade: look for pull request email

Announcements

Official SML family reference:
http://sml-family.org

Announcements

Homework help tonight 7-9pm (HERE)

fold

Intuition:

fold left

foldl (fn (x,acc) => acc+x) 0 [1,2,3,4]

acc = 0, [1,2,3,4]
[2,3,4]
[3,4]

acc = 3+3, [4]

acc = 0+1,

acc = 1+2,

acc 6+4, []

returns acc = 10

fold right

foldr (fn (x,acc) => acc+x) 0 [1,2,3,4]

[1,2,3,4], acc = 0
[1,2,3], acc = 0+4
[1,2], acc = 443
[1] acc = T7+2

[1], acc = 941

returns acc = 10

fold

« Write a function number in month that takes a list of dates
(Where adateis int*int*int)and an int month and
returns how many dates are in month

* Anyone try this at home?

fun number in month dates month =
foldl (fn ((,m,),acc) =>
acc + (if m = month then 1 else 0)) 0 dates

val number in month =
fn : ('a * '"'b * '¢c) list -> ''b -> int

fold

structural recursion — fold it!

(in a nutshell: any problem that recurses on a subset of input)

4
i S
(1 0 B0 BT) Nagk
)
)
list length tree height evaluation

pattern matching

We've used this already. Did you notice?

fun number in month dates month : int =
foldl (fn ((_,m,),acc) =>
acc + (if m = month then 1 else 0)) 0 dates

pattern matching

A pattern is built from
-values,
- constructors,

-and

« Tests whether value(s) have shape defined by pattern

* If matches, binds variable(s) in pattern to value(s)

pattern matching

« Write a function get nth that takes a list of strings and an
int nand returns the nth element of the list, where the
head is 15t

* Anyone try this at home?

NONE
SOME x

fun get nth nil n
| get nth (x::xs) 1
| get nth (x::xs) n
if n > 1 then get nth xs (n-1) else NONE

val get nth = fn : 'a list -> int -> 'a option

pattern matching handling errors with patterns

* Another example: handling errors.

fun get nth nil n NONE * SML has exceptions (like Java)
| get nth (x::xs) 1 SOME x

| get nth (x::xs) n
if n > 1 then get nth xs (n-1) else NONE

« But an alternative, easy way to handle many
errors is to use the option type:

datatype 'a option = NONE | SOME of 'a

handling errors with patterns option type

« Why option?

« optionisa datatype;

fun get nth nil n = NONE
| get nth (x::xs) 1 = SOME x not handling errors is a static type error!
| get nth (x::xs) n = o o .
if n > 1 then get nth xs (n-1) else NONE « Wait.. isn't this just the same thing as "‘checked

exceptions” from Java?

* They are similar but not the same. We'll talk

more about this in a coming lecture.

handling errors with patterns

— get nth [1,2,3,4] 3

val it = SOME 3 : int option
— get nth [1,2,3,4] O

val it = NONE : int option
— get nth [1,2,3,4] 5

val it = NONE : int option

handling errors with patterns

Let's handle this error.

.. Whatever ..

val 1

val x = get nth [1,2,

case x of

3,41 1

SOME n => print ((Int.toString n)

| NONE => print ((Int.toString i)

A ANY

A \\\n//)

is not a wvalid index!”)

algebraic datatypes
(pattern matching's best friend)

datatype 'a option =
NONE
| SOME of 'a

datatype treat =
SNICKERS

| TWIX

| TOOTSIE ROLL

| DENTAL FLOSS

algebraic datatypes

(pattern matching's best friend)

datatype treat =
SNICKERS

| TWIX

| TOOTSIE ROLL
| DENTAL FLOSS

fun trick or treat
| trick or treat
| trick or treat
| trick or treat

SNICKERS
TWIX
TOOTSIE ROLL

DENTAL FLOSS =

“treat!”
“treat!”
“treat!”
“trick!”

algebraic datatypes
(pattern matching's best friend)

fun trick or treat SNICKERS = “treat!”
| trick or treat TWIX = “treat!”
| trick or treat TOOTSIE ROLL = “treat!”

“trick!”

| trick or treat DENTAL FLOSS

shorthand for case expression:

fun trick or treat t =
case t of
SNICKERS => “treat!”
| TWIX => “treat!”
| TOOTSIE ROLL => “treat!”
| DENTALiFLOSS => “trick!”

Activity

Write a function is older that takes two dates (where a
dateis int*int*int) and returns true or false. It
evaluates to true if and only if the first argument is a date
that comes before the second argument. If the two dates
are the same, return false.

Eg.
is older (2018,2,21) (2018, 2,22) returns true

Activity

Write a function num before sumthat takes an int called
sum (@ssume sum is positive) and an int 1ist (@ssume all
positive) and returns an int. The returnvalue isann
such that the sum of the first n elements is < sum and the
sumofthen + 1elementsis >= sum Assume that the
sum of the entire list > n. Summing goes from left to right.

Eg.
num before sum 3 [0,1,2,3] returns 2

