CSCl 334:
Principles of Programming Languages

Lecture 5: Fundamentals Il & ML

Instructor: Dan Barowy

Announcements

Claire Booth Luce info session tonight
for women interested in summer research
(hopefully in CS)),

TBL 211

(also: pizza and ice cream)

midterm: before or after spring break?

Williams
M ::= x variable MMM
| Ax.M abstraction

| MM function application

(MM)M or M (MM)?




Order does not matter

Reduction strategies

M (AX.Vy) ((AxX.xX X) (AX.X X))
/ \ IfM = M, and M = M, function argument
M M, then M; =" Nand M, =" N
for some N
‘AN;"
‘confluence”
Reduction strategies Reduction strategies
(Ax.Vy) ((Ax.xX X) (Ax.xX X)) (Ax.Vy) ((Ax.xX X) (AxX.xX X))
function argument function argument

Normal-order reduction:
Choose the left-most redex first.

1. ([(Ax.x X) (Ax.x x)/x]y)
2.y




Reduction strategies

(AX.V) ((Ax.xX X) (AX.X X))

function argument

Applicative-order reduction:
Choose the right-most redex first.

(Ax.y) (([(Ax.x x)/x]x X))
(AX.V) ((Ax.x X) (AX.X X))

1
2.
3
4. uhoh.

(Ax.y) (([(Ax.x x)/x]x X))

N\

Order does not matter

IfM—=>M,and M = M,
then M, =" Nand M, =" N
for some N

RS

N

-Normal-order reduction will always find a

normal form if one exists.

- Applicative-order reduction will always find a

normal form if reduction terminates.

(Af.Ax.E(E %)) (Az.x+2)

([(Az.x+z)/flha.£(f a)
Ad. (Az.x+z) ((Az.x+z)a

(Az.x+z)a

P

Aa. (Ab.x+b)

2

( )

( ( )

(Aa. (Ab.x+b) ([a/z] (x+2))
( (
[

2
2
2

L~ o~~~

Aa. (Ab.x+b) (x+a))2 ->
(Aa. [ (x+a) /b] (x+b))2 =
(Aa.x+(xt+a))2 ->

[2/a] (x+(x+a)) =

X+xX+2

2
Af.Aa.f(f a)) (Az.x+tz)2 —>

)

)

)

)

(rename x)
(reduce f)
(substitution)
(rename 2)
(reduce 2)
(substitution)
(reduce b)
(substitution)
(reduce a)

(

substitution)

1980 -
1990 .

LISP

ML
Mirap T = I g e,
Haskellsexreee-- Standard ML .. Caml ... Java seeseiens




ML

- Dana Scott

- Logic of Computable Functions
(LCF)
- Automated proofs!
- Theorem proving is essentially a

‘search problem’”.

-1t is (essentially) NP-Complete
-But works “in practice” with the

right “tactics”

- Robin Milner

- How to program tactics?

- A "meta-language’ is needed
- ML is born

ML

LCF/ML influence: Dafny

method MultipleReturns(x: int, y: int) returns

(more: int, less: int)
ensures less < x
ensures x < more

more := X + y;
less := x - y;

+ K Rustan Leino
- Dafny programs can often be proven correct (wrt spec)

* Rustan also famous for his hair ;)

ML Features: static types

- Core: LISP + “static types”
- types are checked before program runs

- Static types guarantee correctness of programs
- Why does this not violate halting problem?

- All "well-typed” programs do not fail at runtime




ML Features: parametric polymorphism

fun swapInt(x: int, y: int): int*int = (y,X)
fun swapReal(x: real, y: real): real*real = (y,X)
fun swapString(x: string, y: string): string*string = (y,x)

- "abstract types” allow programmers to write generic

programs; reveal underlying idea without boilerplate

fun swap(x: 'a, y: 'b): 'b * 'a = (y,X)

ML Features: type inference

fun swap(x: 'a, y: 'b): 'b * 'a = (y,x)
* writing types is hard (and sometimes ugly!)

fun swap(x, y) = (y,X)

ML Features: exceptions

- Milner: it's hard to write well-typed programs
+ mechanism to allow programs to signal error

- and correct for them at runtime

fun foo =
exception DivByZero of string
if x = 0 then raise DivByZero(“no zeros!"”)

foo
handle DivByZero msg => do something else

ML Features: side effects; mutability

* These are features?

- For real-world programs, yes.

fun foo() = let val x : int ref = ref 3
let val name = “Dan” val y : int = Ix
in in
print (name "~ “\n") X = (!x) + 1;
end; y + (!x)
end
side effect mutability

- Both are often essential for speed

- But can be largely avoided in many programs for safety




Running ML

e Type sml on Unix machines
eCtrl-Dto quit
e Enter expression or declarations to evaluate:

- 3 + 5;

val it = 8 : int

- it * 2;

val it = 16 : int
- val six = 3 + 3;
val six = 6 : int

eOr'"sml < file.ml"

21

Defining Functions

No type info
given- compiler

« Example infers it
- fun succ x = x + 1;
val succ = fn int -> int
- succ 12;

val it = 13 : int
- 17 * (succ 3);
val it = 68 : int;
e Or:
- val succ = fn x => x + 1;

val succ = fn int -> int

Recursion

¢ All functions written using recursion and
if.. then.. else (and patterns):
- fun fact n =
if n = 0 then 1 else n * fact (n-1);

eif..then..elseisan expression:
- if 3<4 then "moo" else "cow";
val it = "moo" string
- types of branches must match

Local Declarations

- fun cylinderVolume diameter height =
let val radius = diameter / 2.0;
fun square y =y * vy
in
3.14 * square radius * height
end;
val cylinderVolume = fn real -> real -> real

- cylinderVolume 6.0 6.0;
val it = 169.56 : real




Built-in Data Types

e UNit
- only valueis ()

Yelelell
- true, false
— operators not, andalso, orelse
eint
- we., ~2, ~1, 0, 1, 2,
-+,-,%*,div,mod, abs
-=,<,<=, etc.

Built-in Data Types

e rcal
-3.17, 2.2, .
,_|_, -, *’ /
- <, <=, etc

no implicit conversions from inttoreal: 2 + 3.3 is bad

- no equality (test that -0.001 < x-y < 0.001, etc.)

e Strings
_ "mOO"
_ "mOO"

A A\Y

cow"

Overloaded Operators

e + - etc. defined on both int and real

¢ \X/hich variant inferred depends on operands:

- fun succ x = x + 1
val succ = fn : int -> int

- fun double x = x * 2.0
val double = fn : real -> real

- fun double x = X + x
val double = fn : int -> int

Type Declarations

e Can add types when type inference does not work

- fun double (xX:real) = x + X;

val double = fn

real -> real

- fun double (x:real) : real = X + X;

val double = fn

real -> real




Compound Types

e Tuples, Records, Lists
e Tuples

(14, "moo", true): int * string * bool

e Functions can take tuple argument
- fun power (exp,base) =
if exp = 0 then 1
else base * power (exp-1,base);
val power = fn : int * int -> int
- power (3,2);

Curried Functions (named after Haskell Curry)

e Previous power
- fun power (exp,base) =
if exp = 0 then 1
else base * power (exp-1,base);
val power = fn : int * int -> int
e Curried power function
- fun cpower exp =
fn base =>
if exp = 0 then 1
else base * cpower (exp-1l) base;

val cpower = fn : int -> (int -> int)

Curried Functions (named after Haskell Curry)
¢ \X/hy is this useful?

- fun cpower exp base =
if exp = 0 then 1
else base * cpower (exp-1) base;

val cpower = fn : int -> (int -> int)
e Can define

- val square = cpower 2

val square = fn : int -> int

- square 3;

val it = 9 : int

Records

o Like tuple, but with labeled elements:
- val x =
{ name="Gus", salary=3.33, id=11 };
e Selector operator:
- #salary(x);

val it = 3.33 : real
- #name (%) ;
val it = "Gus" : string




Lists

e Examples
-[1, 2, 3, 4], ["wombat", "numbat"]
- nilisempty list (sometimes written [1)
- all elements must be same type

e Operations
- length length [1,2,3] =3

- @ - append (1,21@[3,4] =1[1, 2, 3, 4]
- :: - prefix 1::[2,31 =11, 2, 3]
— map map succ [1,2,3]=1[2,3,4]

Lists

e Functions on Lists

- fun product (nums) =
if (nums = nil)
then 1
else (hd nums) * product(tl nums);

val product = fn : int list -> int

- product ([5, 2, 31);
val it = 30 : int;

Pattern Matching

e List is one of two things:

-nil
—"first elem" :: "rest of elems"
-[1, 2, 31 = 1::[2,3] = 1::2::[3]

= 1::2::3::nil

e Can define function by cases

fun product (nil) = 1
| product (x::xs) =

X * product (xs);

Patterns on Integers

e Patterns on integers
fun listInts 0 = [0]
| listInts n = n::1listInts(n-1);

listInts 3 = [3, 2, 1, 0];

e More on patterns for other data types next time




Many Types Of Lists
el::2::nil : int list
"wombat"::"numbat"::nil : string list
o What type of listisnil?
- nil;
val it = [] : 'a list
e Polymorphic type

- 'alis atype variable that represents any type
—1::nil: int list
"a"::nil : string list

The Length Function

e Another Example

fun length (nil) = 0

| length (x::xs) 1 + length (xs);

o \What is the type of length?
e How about this one:

fun id x = x;

Polymorphism

fun length (nil) = 0
| length (x::xs) = 1 + length (xs);
- val it = fun 'a list -> int

fun id x = x;
- val it = fun '

Type variable
represents

any type

Patterns and Other Declarations

e Patterns can be used in place of variables

e Most basic pattern form
—val <pattern> = <exp>;

e Examples
-val x = 3;
-val tuple = ("moo", "cow");
-val (x,y) = tuple;
-val myList = [1, 2, 3];
—val w::rest = myList;
—val v:: = mylList;




Datatype

public static final int NORTH =
public static final int SOUTH =
public static final int EAST = 3;
public static final int WEST = 4

public move (int x, int vy, int dir)
switch (dir) {
case NORTH:
case

Datatype

datatype Direction =
North | South | East | West;

fun move ((x,vy),North) = (x,y-1)
| move ((x,y),South) (x,y+1)

.
4

- Above is an ‘incomplete pattern’
- ML will warn you when you've missed a casel!

- "proof by exhaustion’




