
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 5: Fundamentals III & ML

Announcements

Claire Booth Luce info session tonight

for women interested in summer research

(hopefully in CS!),

TBL 211

(also: pizza and ice cream)

midterm: before or after spring break?

M ::= x

 | λx.M

 | MM

variable

function application

abstraction
MMM

(MM)M or M(MM)?

Order does not matter

If M → M1 and M → M2

then M1 →* N and M2 →* N
for some N

M

M1 M2

N “confluence”

(λx.y)((λx.x x)(λx.x x))

Reduction strategies

function argument

(λx.y)((λx.x x)(λx.x x))

Reduction strategies

function argument

(λx.y)((λx.x x)(λx.x x))

Normal-order reduction: 
Choose the left-most redex first.

1. ([(λx.x x)(λx.x x)/x]y)

function argument

2. y

Reduction strategies

(λx.y)((λx.x x)(λx.x x))

Applicative-order reduction: 
Choose the right-most redex first.

1. (λx.y)(([(λx.x x)/x]x x))
2. (λx.y)((λx.x x)(λx.x x))

Reduction strategies

function argument

3. (λx.y)(([(λx.x x)/x]x x))
4. uh oh…

Order does not matter

If M → M1 and M → M2

then M1 →* N and M2 →* N

for some N

M

M1 M2

N

•Normal-order reduction will always find a
normal form if one exists.

•Applicative-order reduction will always find a
normal form if reduction terminates.

(λf.λx.f(f x))(λz.x+z)2 =

(λf.λa.f(f a))(λz.x+z)2 -> (rename x)

([(λz.x+z)/f]λa.f(f a))2 = (reduce f)

(λa.(λz.x+z)((λz.x+z)a))2 = (substitution)

(λa.(λb.x+b)((λz.x+z)a))2 -> (rename z)

(λa.(λb.x+b)([a/z](x+z))2 = (reduce z)

(λa.(λb.x+b)(x+a))2 -> (substitution)

(λa.[(x+a)/b](x+b))2 = (reduce b)

(λa.x+(x+a))2 -> (substitution)

[2/a](x+(x+a))= (reduce a)

x+x+2 (substitution)

1960

1970

1980

1990

2000

2010

LISP
1950

ML

Standard ML Caml
OCaml

Miranda
Haskell

F#

Java

C#

ML

ML

• Dana Scott

• Logic of Computable Functions

(LCF)

•Automated proofs!

•Theorem proving is essentially a

“search problem”.

• It is (essentially) NP-Complete

•But works “in practice” with the

right “tactics”

ML

• Robin Milner

• How to program tactics?

• A “meta-language” is needed

• ML is born

LCF/ML influence: Dafny

method MultipleReturns(x: int, y: int) returns
(more: int, less: int)
 ensures less < x
 ensures x < more
{
 more := x + y;
 less := x - y;
}

• K. Rustan Leino

• Dafny programs can often be proven correct (wrt spec)

• Rustan also famous for his hair :)

ML Features: static types

• Core: LISP + “static types”

• types are checked before program runs

• Static types guarantee correctness of programs

• Why does this not violate halting problem?

• All “well-typed” programs do not fail at runtime

ML Features: parametric polymorphism

• “abstract types” allow programmers to write generic

programs; reveal underlying idea without boilerplate

fun swapInt(x: int, y: int): int*int = (y,x)
fun swapReal(x: real, y: real): real*real = (y,x)
fun swapString(x: string, y: string): string*string = (y,x)

fun swap(x: 'a, y: 'b): 'b * 'a = (y,x)

ML Features: type inference

• writing types is hard (and sometimes ugly!)

fun swap(x: 'a, y: 'b): 'b * 'a = (y,x)

fun swap(x, y) = (y,x)

ML Features: exceptions

• Milner: it’s hard to write well-typed programs

• mechanism to allow programs to signal error

• and correct for them at runtime

fun foo =
exception DivByZero of string
if x = 0 then raise DivByZero(“no zeros!”)

…

foo
handle DivByZero msg => do something else

ML Features: side effects; mutability

• These are features?

• For real-world programs, yes.

fun foo() =
 let val name = “Dan”
 in
 print (name ^ “\n”)
 end;

side effect

 let val x : int ref = ref 3
 val y : int = !x
 in
 x := (!x) + 1;
 y + (!x)
 end

mutability

• Both are often essential for speed

• But can be largely avoided in many programs for safety

21

Running ML

•Type sml on Unix machines

•Ctrl-D to quit

•Enter expression or declarations to evaluate:
- 3 + 5;
val it = 8 : int
- it * 2;
val it = 16 : int
- val six = 3 + 3;
val six = 6 : int

•Or "sml < file.ml"

Defining Functions

•Example
 - fun succ x = x + 1;
 val succ = fn : int -> int
 - succ 12;
 val it = 13 : int
 - 17 * (succ 3);
 val it = 68 : int;

•Or:
 - val succ = fn x => x + 1;
 val succ = fn : int -> int

No type info
given- compiler
infers it

Recursion

•All functions written using recursion and  
if.. then.. else (and patterns):
- fun fact n =  
 if n = 0 then 1 else n * fact (n-1);

•if..then..else is an expression:
- if 3<4 then "moo" else "cow";
val it = "moo" : string
- types of branches must match

Local Declarations

- fun cylinderVolume diameter height =
 let val radius = diameter / 2.0;
 fun square y = y * y
 in
 3.14 * square radius * height
 end;

val cylinderVolume = fn : real -> real -> real

- cylinderVolume 6.0 6.0;
val it = 169.56 : real

Built-in Data Types

•unit
– only value is ()

•bool
– true, false
– operators not, andalso, orelse

• int
– ..., ~2, ~1, 0, 1, 2, ...
– +,-,*,div,mod,abs
– =,<,<=, etc.

Built-in Data Types

•real
– 3.17, 2.2, ...
– +, -, *, /
– <, <=, etc.
– no implicit conversions from int to real: 2 + 3.3 is bad
– no equality (test that -0.001 < x-y < 0.001, etc.)

•strings
– "moo"
– "moo" ^ “cow"

Overloaded Operators

•+,-,etc. defined on both int and real

•Which variant inferred depends on operands:  

- fun succ x = x + 1
val succ = fn : int -> int

- fun double x = x * 2.0
val double = fn : real -> real

- fun double x = x + x
val double = fn : int -> int

Type Declarations

•Can add types when type inference does not work

- fun double (x:real) = x + x;
val double = fn : real -> real

- fun double (x:real) : real = x + x;
val double = fn : real -> real

Compound Types

•Tuples, Records, Lists

•Tuples
(14, "moo", true): int * string * bool

•Functions can take tuple argument
- fun power (exp,base) =  
 if exp = 0 then 1  
 else base * power(exp-1,base);

val power = fn : int * int -> int
- power(3,2);

Curried Functions (named after Haskell Curry)

•Previous power
- fun power (exp,base) =  
 if exp = 0 then 1  
 else base * power(exp-1,base);

val power = fn : int * int -> int

•Curried power function
- fun cpower exp =  
 fn base =>  
 if exp = 0 then 1  
 else base * cpower (exp-1) base;

val cpower = fn : int -> (int -> int)

•Why is this useful?
- fun cpower exp base =  
 if exp = 0 then 1  
 else base * cpower (exp-1) base;

val cpower = fn : int -> (int -> int)

•Can define
- val square = cpower 2
val square = fn : int -> int
- square 3;
val it = 9 : int

Curried Functions (named after Haskell Curry) Records

•Like tuple, but with labeled elements:
- val x =  
 { name="Gus", salary=3.33, id=11 };

•Selector operator:
- #salary(x);
val it = 3.33 : real
- #name(x);
val it = "Gus" : string

Lists

•Examples
– [1, 2, 3, 4], ["wombat", "numbat"]
– nil is empty list (sometimes written [])
– all elements must be same type

•Operations
– length length [1,2,3] ⇒ 3

– @ - append [1,2]@[3,4] ⇒ [1, 2, 3, 4]

– :: - prefix 1::[2,3] ⇒ [1, 2, 3]

– map map succ [1,2,3] ⇒ [2,3,4]

Lists

•Functions on Lists

- fun product (nums) =
 if (nums = nil)
 then 1
 else (hd nums) * product(tl nums);

val product = fn : int list -> int

- product([5, 2, 3]);
val it = 30 : int;

Pattern Matching

•List is one of two things:
– nil
– "first elem" :: "rest of elems"
– [1, 2, 3] = 1::[2,3] = 1::2::[3]  
= 1::2::3::nil

•Can define function by cases

fun product (nil) = 1
 | product (x::xs) = x * product (xs);

Patterns on Integers

•Patterns on integers
fun listInts 0 = [0]
 | listInts n = n::listInts(n-1);

listInts 3 ⇒ [3, 2, 1, 0];

•More on patterns for other data types next time

Many Types Of Lists

•1::2::nil : int list  
"wombat"::"numbat"::nil : string list

•What type of list is nil?
- nil;
val it = [] : 'a list

•Polymorphic type
– 'a is a type variable that represents any type
– 1::nil : int list 
"a"::nil : string list

The Length Function

•Another Example

fun length (nil) = 0
 | length (x::xs) = 1 + length (xs);

•What is the type of length?

•How about this one:

fun id x = x;

Polymorphism

fun length (nil) = 0
 | length (x::xs) = 1 + length (xs);
- val it = fun 'a list -> int

fun id x = x;
- val it = fun 'a -> 'a

Type variable
represents
any type

Patterns and Other Declarations

•Patterns can be used in place of variables

•Most basic pattern form
– val <pattern> = <exp>;

•Examples
– val x = 3;
– val tuple = ("moo", "cow");
– val (x,y) = tuple;
– val myList = [1, 2, 3];
– val w::rest = myList;
– val v::_ = myList;

Datatype

public static final int NORTH = 1;
public static final int SOUTH = 2;
public static final int EAST = 3;
public static final int WEST = 4;

public move(int x, int y, int dir) {
 switch (dir) {
 case NORTH: ...
 case ...
 }
}

Datatype

datatype Direction =  
 North | South | East | West;

fun move((x,y),North) = (x,y-1)
 | move((x,y),South) = (x,y+1)
 ;

• Above is an “incomplete pattern”

• ML will warn you when you’ve missed a case!

• “proof by exhaustion”

