
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 4: Fundamentals II

Activity

Write a function firsts that, when given a
list of cons cells, returns a list of the left

element of each cons.

((a . b) (c . d) (e . f) (g . h))

firsts

(a c e g)

What is computable?

• Hilbert: Is there an algorithm

that can decide whether a

logical statement is valid

given axioms?

• “Entscheidungsproblem” 
(literally “decision problem”)

• Leibniz thought so!

What is computable?

• Why do we care?

• f(x) = x + 1

• We can clearly do this with 
pencil and paper.

• ∫ 6x dx

• Also computable, in a different manner.

• We care because the computable functions

can be done on a computer.

“What is the answer to the ultimate
question of life, the universe, and

everything?

Lambda calculus

• Invented by Alonzo Church in 
order to solve 
the Entscheidungsproblem.

• Short answer to Hilbert’s 
question: no.

• Proof: No algorithm can decide equivalence of

two arbitrary λ-calculus expressions.

Lambda calculus is deceptively simple

• Church-Turing thesis: every computable

function can be represented in the λ-

calculus; i.e., it is “Turing complete”.

• Grammar in BNF:

M ::= x

 | λx.M

 | MM

variable

function application

abstraction

M ::= x

 | λx.M

 | MM

• “pure” λ-calculus doesn’t say anything

about the values of variables.

• We often extend λ-calculus with arithmetic,

so “1”, “2”, “3”, … are also considered terms.

• Justified by Church’s own proof that

arithmetic (Peano axioms) can be encoded

in λ-calculus (see “Church encoding”).

variable

function application

abstraction

M ::= x

 | λx.M

 | MM

• Functions are at the heart of λ-calculus.

• Functions are “nameless”:

• Just a λ denoting “function”.

• A “bound variable” x ∈ {x, y, z, …}

• An expression M where x is “bound”.

• E.g., λx.x + 1 adds one to x

variable

function application

abstraction

• λx.x + 1

• Translation: 
def func(x): 
 return x + 1

• Remember that no programming languages

existed at the time. λ-calculus was the first!

• Why “λ”?

M ::= x

 | λx.M

 | MM

variable

function application

abstraction

• How do we compute 5 + 1 = 6?

• (λx.x + 1)5

• Works by process of substitution  
 ([5/x]x + 1)  
= (5 + 1)  
= 6

M ::= x

 | λx.M

 | MM

variable

function application

abstraction
α-equivalence

• The chosen symbol for a bound variable does

not matter.

• λx.x =α λy.y

• More precisely 
λx.M = λy.[y/x]M

• “Substitute y for occurrences of x in M (such

that y does not already appear in M).”

• M is the “scope” of the binding.

Free variables

• These two are not α-equivalent

• λx.x + b ≠α λy.y + c

• Why? b and c are “free variables”

• Proof: 
λx.x + b  
=α ([y/x]λx.x + b)  
= λy.y + b

• λy.y + b ≠α λy.y + c

β-equivalence
• We compute function application using

substitution: “β-reduction”

• (λx.x + 1)5 =β 5 + 1

• How did we get that?

• We substituted 5 for x.

• (λx.x + 1)5  
=β ([5/x]x + 1)  
= (5 + 1)  
= 5 + 1

Constant function

• A constant function is one that does not

depend on a variable

• (λx.1)= 1

• Means that unnecessary variables can be

eliminated

• (λx.λy.y)= (λy.y)

η-equivalence

• If an abstraction exists solely to pass its

argument to another function, the abstraction

can be eliminated.

• λx.M x =η M  
(assuming that x does not appear in M)

Renaming bound variables

• Some expressions are hard to evaluate unless

you rename some of the variables.

• (λf.λx.f(f x))(λy.y + x)

• Note that the free variable x appears on the

right and the bound variable x appears on the

left. These are different variables!

• ([z/x]λf.λx.f(f x))(λy.y + x)  
=α (λf.λz.f(f z))(λy.y + x)  
… (λz.z + x + x)

Order does not matter

If M → M1 and M → M2

then M1 →* N and M2 →* N
for some N

M

M1 M2

N “confluence”

Activity

(λf.λx.f(f x))(λz.x+z)2

…

= x + x + 2

