CSCl 334:
Principles of Programming Languages

| ecture 4; Fundamentals |l

Instructor: Dan Barowy
Williams

Activity

Write a function firsts that, when given a
list of cons cells, returns a list of the left
element of each cons.

What is computable?

« Hilbert: Is there an algorithm
that can decide whether a
logical statement is valid

given axioms?

» "Entscheidungsproblem’
(literally "decision problem”)

 Leibniz thought so!

What is computable?

+ Why do we care?

o f(X)=x+1

+ We can clearly do this with
pencil and paper.

e [6xdx

« Also computable, in a different manner.

+ We care because the computable functions

can be done on a computer.




"What is the answer to the ultimate
question of life, the universe, and
everything?

Lambda calculus

* Invented by Alonzo Church in
order to solve
the Entscheidungsproblem.

* Short answer to Hilbert's

question: no.

« Proof: No algorithm can decide equivalence of

two arbitrary A-calculus expressions.

Lambda calculus is deceptively simple

» Church-Turing thesis: every computable
function can be represented in the A-
calculus; ie, itis "Turing complete”.

« Grammar in BNF:

M ::= X variable
| Ax.M abstraction
| MM function application

M ::= x —— variable
| Ax.M abstraction
| MM function application

* ‘pure” A-calculus doesn't say anything
about the values of variables.

« We often extend A-calculus with arithmetic,
so "1, "2" "3', .. are also considered terms.

» Justified by Church's own proof that
arithmetic (Peano axioms) can be encoded

in A-calculus (see “Church encoding”).




M ::= x variable
| Ax.M —— gbstraction

| MM function application

« Functions are at the heart of A-calculus.

» Functions are "nameless”.
« Just a A denoting “function”.
« A'boundvariable'x € {x, vy, z, ..}
« An expression M where x is "‘bound”

« Eg,Ax.x + 1 addsoneto x

M ::= x variable

| Ax.M  —— abstraction

| MM function application
AX.x + 1
Translation:
def func(x):

return x + 1

Remember that no programming languages
existed at the time. A-calculus was the first!
Why “\'"?

M ::= X variable
| Ax.M abstraction
| MM — function application

* How do we compute 5+1=6?
* Ax.x + 1)5

» Works by process of substitution
([5/x1x + 1)

(5 + 1)
= 6

x-equivalence
The chosen symbol for a bound variable does

not matter.

AX.X =¢ AV.Y

More precisely

Ax.M = Ay. [y/x]M

“Substitute y for occurrences of x in M (such
that y does not already appear in M).

Mis the "scope’ of the binding.




Free variables
These two are not x-equivalent
AX.Xx + b #4 Ay.y + C
Why? b and c are "free variables’
Proof:
AX.X + b
=« ([y/x]Ax.x + D)
= Ay.y + b
Ay.y + b # Ay.y + C

B-equivalence
We compute function application using

substitution: “B-reduction”

Ax.x + 1)5 =5 5 + 1

How did we get that?

We substituted 5 for x.
(Ax.x + 1)5

=5 ([5/x]x + 1)

= (b + 1)

=5+ 1

Constant function

A constant function is one that does not
depend on a variable

x.1)= 1

Means that unnecessary variables can be

eliminated

Ax.Ay.y)= Ay.y)

n-equivalence

If an abstraction exists solely to pass its

argument to another function, the abstraction

can be eliminated.
AX.M x =4 M

(@assuming that x does not appear in M)




Renaming bound variables
Some expressions are hard to evaluate unless

you rename some of the variables.

Af.Ax.E(f %)) (AV.y + x)

Note that the free variable x appears on the

right and the bound variable x appears on the

left. These are different variables!
([z/x]IAf.Ax.f(f x)) (Ay.y + X)

=« (AM.Az.£(f 2)) (Ay.y + X)

(Az.z2 + x + X)

Order does not matter

M/ | \M2

IfM—=>M,and M = M,
thenM; =" Nand M, =" N
for some N

‘confluence”

Activity

(M. Ax E(f %)) (Az.xtz)2

=x + x + 2




