
CSCI 334: 
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 4: Fundamentals II

Activity

Write a function firsts that, when given a 
list of cons cells, returns a list of the left 

element of each cons.

( (a . b) (c . d) (e . f) (g . h) )

firsts

(a c e g)

What is computable?

• Hilbert: Is there an algorithm 

that can decide whether a 

logical statement is valid 

given axioms? 

• “Entscheidungsproblem” 
(literally “decision problem”) 

• Leibniz thought so!

What is computable?

• Why do we care? 

• f(x) = x + 1 

• We can clearly do this with 
pencil and paper. 

• ∫ 6x dx 

• Also computable, in a different manner. 

• We care because the computable functions 

can be done on a computer.



“What is the answer to the ultimate 
question of life, the universe, and 

everything?

Lambda calculus

• Invented by Alonzo Church in 
order to solve 
the Entscheidungsproblem. 

• Short answer to Hilbert’s 
question: no. 

• Proof: No algorithm can decide equivalence of 

two arbitrary λ-calculus expressions.

Lambda calculus is deceptively simple 

• Church-Turing thesis: every computable 

function can be represented in the λ-

calculus; i.e., it is “Turing complete”. 

• Grammar in BNF:

M ::= x 

  |  λx.M 

  |  MM

variable

function application

abstraction

M ::= x 

  |  λx.M 

  |  MM

• “pure” λ-calculus doesn’t say anything 

about the values of variables. 

• We often extend λ-calculus with arithmetic, 

so “1”, “2”, “3”, … are also considered terms. 

• Justified by Church’s own proof that 

arithmetic (Peano axioms) can be encoded 

in λ-calculus (see “Church encoding”).

variable

function application

abstraction



M ::= x 

  |  λx.M 

  |  MM

• Functions are at the heart of λ-calculus. 

• Functions are “nameless”: 

• Just a λ denoting “function”. 

• A “bound variable” x ∈ {x, y, z, …} 

• An expression M where x is “bound”. 

• E.g., λx.x + 1 adds one to x

variable

function application

abstraction

• λx.x + 1 

• Translation: 
def func(x): 
    return x + 1 

• Remember that no programming languages 

existed at the time. λ-calculus was the first! 

• Why “λ”?

M ::= x 

  |  λx.M 

  |  MM

variable

function application

abstraction

• How do we compute 5 + 1 = 6? 

• (λx.x + 1)5 

• Works by process of substitution  
  ([5/x]x + 1)  
= (5 + 1)  
= 6

M ::= x 

  |  λx.M 

  |  MM

variable

function application

abstraction
α-equivalence

• The chosen symbol for a bound variable does 

not matter. 

• λx.x =α λy.y 

• More precisely 
λx.M = λy.[y/x]M 

• “Substitute y for occurrences of x in M (such 

that y does not already appear in M).” 

• M is the “scope” of the binding.



Free variables

• These two are not α-equivalent 

• λx.x + b ≠α λy.y + c 

• Why? b and c are “free variables” 

• Proof: 
λx.x + b  
=α ([y/x]λx.x + b)  
=   λy.y + b 

• λy.y + b ≠α λy.y + c

β-equivalence
• We compute function application using 

substitution: “β-reduction” 

• (λx.x + 1)5 =β 5 + 1 

• How did we get that? 

• We substituted 5 for x. 

•    (λx.x + 1)5  
=β ([5/x]x + 1)  
= (5 + 1)  
= 5 + 1

Constant function

• A constant function is one that does not 

depend on a variable 

• (λx.1)= 1 

• Means that unnecessary variables can be 

eliminated 

• (λx.λy.y)= (λy.y)

η-equivalence

• If an abstraction exists solely to pass its 

argument to another function, the abstraction 

can be eliminated. 

• λx.M x =η M  
(assuming that x does not appear in M)



Renaming bound variables

• Some expressions are hard to evaluate unless 

you rename some of the variables. 

• (λf.λx.f(f x))(λy.y + x) 

• Note that the free variable x appears on the 

right and the bound variable x appears on the 

left. These are different variables! 

•  ([z/x]λf.λx.f(f x))(λy.y + x)  
=α (λf.λz.f(f z))(λy.y + x)  
… (λz.z + x + x)

Order does not matter

If M → M1 and M → M2 

then M1 →* N and M2 →* N  
for some N

M

M1 M2

N “confluence”

Activity

(λf.λx.f(f x))(λz.x+z)2 

… 

= x + x + 2


