
Class Activity Solution
Handout 15

CSCI 334: Spring 2018

Pattern matching functions

Pattern matching is a technique for elegantly handling cases in code. It is an alternative to condi-
tionals, which are hard to read when there are more than two cases. Pattern matching also simulta-
neously and concisely binds values to variables.

Problem statement: Write a function get nth that takes a list of strings and an integer n and
returns the nth element of the list where the head of the list is defined as the 1st element.

In class, I told you not to worry about cases where the list was empty or where n was greater than
the length of the list. As a practical matter, though, we do need to address it. Here, I use a very simple,
type-safe error handling mechanism called an option type. The type is defined as:

datatype ’a option = NONE | SOME of ’a

The option type is an example of an algebraic data type. option lets us concisely signal when a
function is undefined without having to invoke an expensive error-handling mechanism like exceptions.

fun get_nth nil n = NONE
| get_nth (x::xs) 1 = SOME x
| get_nth (x::xs) n =

if n > 1 then get_nth xs (n-1) else NONE

To handle defined/undefined outputs, the user of the get nth function uses pattern matching on
its output.

...
val nth = get_nth n xs
case nth of

SOME x => print ("The " ˆ (Int.toString n)
ˆ "th element is " ˆ x ˆ "\n")

| NONE => print ("The " ˆ (Int.toString n)
ˆ "th element in a list of length "
ˆ (Int.toString (length xs))
ˆ " does not make sense.\n")

...

Folding

Folding is a technique for aggregating values drawn from complex data structures in ML (where
“complex” simply means that the data structure is made from multiple simple pieces) like lists and
trees. Folding can be used to obtain a value for any operation that can be performed by structural
recursion on a data structure.

1

Problem statement: A date is a value of type int*int*int, where the 1st number is a year, the
2nd number is a month, and the 3rd number is a day. Write a function number in month that takes
a list of dates and a month (an int) and returns how many dates are in the list for the given month.
Use fold to solve this problem.

Since fold is likely new to you, let’s start by thinking about what the task looks like without fold.
Here is a recursive solution.

fun number_in_month [] m = 0
| number_in_month ((_,m’,_)::dates) m =

(if m’ = m then 1 else 0)
+ number_in_month dates m

To see how this fits into the fold pattern, note the presence of: (1) a base case, and (2) an accumu-
lated value.

In the base case, we have an empty list, so clearly, there are no matching months and we return 0.

In the inductive case, we either have a matching month or we do not. If the month matches, add
one, otherwise, add 0. In the above code, we do not explicitly maintain an accumulator variable, but we
could have. Instead the sum is maintained implicitly by building a stack of additions using recursion.

Note the use of the pattern ((,m’,)::dates) to extract the month m’ from the list of dates. The
use of means that, structurally, an element must appear (i.e., there must be a three-tuple (,m’,)),
but that the only value we want to bind to a variable is the middle element, m’.

Recall the definition for fold:

fold <function of ’a * accumulator> <initial accumulator value> <list of ’a>

Let’s refactor this code to use fold.

fun number_in_month dates m : int =
foldl (fn ((_,m’,_),acc) =>

acc + (if m’ = m then 1 else 0)) 0 dates

2

