
Class Activity Solution
Handout 12

CSCI 334: Spring 2018

Quoting

We’ve thrown around the ’ construct on a number of occasions, but we have not formally defined it.
What does it do, and when it is appropriate?

’ is a shorthand for the (quote . . .) function. quote instructs the Lisp runtime not to evaluate
its argument. Instead, the argument should be taken at “face value.” In many languages, including
Lisp, face values are known as literals.

What does this mean? We’ve seen ’ used to create lists, as in ’(a b c d). When an expression is
given to the Lisp interpreter, it is normally evaluated to yield a value. Quoting tells Lisp to skip the
evaluation step: the value is the quoted expression. In other words, the meaning of ’(a b c d) is
whatever the expression (a b c d) has in the CLISP REPL.

Be careful with this rule. Just because quoting tells the Lisp interpreter not to evaluate the expres-
sion, this does not mean that the quoted expression is never evaluated. Take the expression (cons ’a
’(b c d)). When evaluating this expression, the interpreter first attempts to evaluate cons. cons
has two arguments: ’a and ’(b c d). The interpreter evaluates each in turn. When evaluating ’a,
the value is the literal a, which is a symbol. Likewise, ’(b c d) is the literal (b c d) which is a list
of symbols. cons now knows that it must create a cons cell consisting of a on the left and the list (b
c d) on the right; chains of cons cells of this form are lists, so the result is the list (a b c d).

To prove the equivalence of quoted expressions to their evaluated counterparts, consider the follow-
ing expression: (equal ’(a.b) (cons ’a ’b)). The result of this expression is T because (a.b)
is the result of (cons ’a ’b).

mapcar with fancy lists

The activity in class asked you to write a function called firsts that returns the left element of
every cons in a list of cons cells.

Using the above information about quoting, let’s first create a list of cons cells:
’((a.b) (c.d) (e.f) (g.h))
Since the left element of a cons is the car, the car of one of our cons cells, say (a.b) is a. Thus

applying firsts to the entire list will produce:
(a c e g)
This sounds like a job for mapcar, which applies a function to each element of a list. But what’s our

function? We already know that we need to get the car. So all we really need to do is combine the two:
(mapcar #’car ’((a.b) (c.d) (e.f) (g.h))

What’s the deal with ’#?

’# is shorthand for the function (function ...). But why do we need it?
It turns out that variable names in Common Lisp (and CLISP in particular) are looked up differ-

ently depending on whether they store ordinary values (like 1) or function values.
(function ...) or #’ tells Lisp to retrieve the function value for the given variable. If you omit

#’ when you need a function value, Lisp will go looking for the ordinary value for the variable.
The rules are a tad more subtle than this, depending on whether Lisp is expecting an ordinary value

or a function value. There’s a nice explanation here: https://stackoverflow.com/a/665673/
480764.

1

https://stackoverflow.com/a/665673/480764
https://stackoverflow.com/a/665673/480764

