
Homework 9
Due Wednesday, 9 May

Handout 29
CSCI 334: Spring 2018

Notes

This homework has two types of problems:

Problems: You will turn in answers to these questions.

Pair Programming: This part involves writing both Scala and Prolog code. You are required to work
with a partner for this section. I will assume that you plan to work with the same partner you
worked with on the last assignment unless you email me.

Turn-In Instructions

You must turn in your work for this assignment in two parts, one for the Problems part and one for
the Pair Programming part. You will be assigned two GitHub repositories.

Note that this assignment should be anonymized: neither your name nor your partner’s name
should appear in any of the files submitted with this assignment except the file “collaborators.txt”
(see below).

Problems: Problem sets should be typed up using LATEX and submitted using your
cs334 hw9 <username> repository. For example, if your GitHub username is dbarowy, then
your repository will be called cs334 hw9 dbarowy. Be sure that your work is committed and
pushed to your repository by Wednesday, May 9 at 11:59pm.
If you discuss the problem set with your partner or with a study group, please be sure to include
their names in a collaborators.txt file in your repository.

Pair Programming: Programming solutions should be typed up and submitted using your partner
repository. For example, if your GitHub username is dbarowy and you are working with a partner
whose username is wjannen, look for a repository called cs334 hw9 dbarowy-wjannen (user-
names will be in alphabetical order). Be sure that your work is committed and pushed to your
repository by Wednesday, May 9 at 11:59pm.

Reading

1. (Required) Pires, Bernardo. “Try logic programming! A gentle introduction to Prolog.”

2. (Optional) Mitchell, Chapter 15.

3. (As Needed) Scala resources on course webpage

Problems

Q1. (10 points) . Prolog Warm-Up
To do these problems, go to the SWISH Prolog interpreter website at https://swish.swi-prolog.
org/. Alternately, download SWI-Prolog to your machine and run the swipl command.
In both versions of Prolog, it is customary to store program “facts” and “rules” in a separate
database file which is then queried using the interpreter. For example, in SWISH, clicking the
blue Program button where it says Create a [Program|Notebook] here creates a database
file. Enter the following terms into the new blank Program window:

1

https://swish.swi-prolog.org/
https://swish.swi-prolog.org/

mood(happy,sunny).
mood(unhappy,rainy).

Go to File→ Save... and click Save Program (the name does not matter). Now, on the right
hand side, where you see the ?- prompt, type:

mood(X,sunny).

and click the Run button. You will see X = happy appear in the output above.
If you use swipl, you will need to load your file using the consult command. If you edit your
file be sure to reload the file using the reconsult command.
To submit this assignment, copy your work from the SWISH program window and save it in a file
that ends in .prolog. You may put all of your definitions into a single file.

(a) Write a program that proves that Sawyer is jealous of Jack because Kate loves Jack instead.
E.g.,

?- jealous(sawyer,Who).
Who = jack.

(b) Encode the following tree and write programs that answer the following questions.

James I
|
|

+----------------+-----------------+
| |

Charles I Elizabeth
| |
| |

+----------+------------+ |
| | | |

Catherine Charles II James II Sophia
|
|
|

George I

i. Who is the grandmother of George I?
ii. Was Charles I the parent of Catherine?
iii. Who are the grandchildren of James I? (I should be able to backtrack using ; to obtain

all of the grandchildren.)

(c) Write a program that returns the last element in a list. E.g.,

?- myLast(X,[apple, banana, cucumber, daikon, escarole, fava]).
X = fava

Q2. (12 points) . Upper and Lower Bounds on Types
Type parameters in Scala (and Java) can be given upper and lower bounds to restrict how they
can be instantiated. Specifically, the type List[<: C] describes a list that stores some data of
some type that is a subtype of of class C. In other words, the type parameter has an upper bound
C. For example, an object of List[<: Point] is a list that contains objects which extend the
Point class. For example, the list could be List[Point] or List[ColorPoint], etc. Reading
an element from such a list is guaranteed to return a Point, but writing to the list is not generally

2

allowed. This sort of bounded type is often called an existential type because it can be interpreted
as “there exists some type T such that T <: C.”
Existential types can also have lower bound constraints. A constraint [>: C] means that the
existential type must be a supertype of class C. For example, an object of List[>: Point]
could be a List[Point] or List[Any]. (Any is the supertype of all types in Scala, and serves
similar purposes as Object in Java). Reading from such a list returns objects of type Any, but
any object of type Point can be added to the list.
This question asks about generic versions of a simple function that reads elements from one list
and adds them to another. Here is sample non-generic code, in case this is useful reference in
looking at the generic code below.

def addAllNonGeneric(src: MutableList, dest: MutableList) : Unit = {
for (o <- src) {

dest += o;
}

}
val listOfPoints = new MutableList();
val listOfColorPoints = new MutableList();
...
addAllNonGeneric(listOfColorPoints, listOfPoints);

It will not compile in Scala, but gives you an idea of what we’re trying to do.

(a) The simplest generic version of the addAll method uses an unconstrained type parameter
and no bounds.

def addAll0[T](src: MutableList[T], dest: MutableList[T]) : Unit = {
for (o <- src) {

dest += o;
}

}

Suppose that we declare

val listOfPoints : MutableList[Point] = new MutableList[Point]();
val listOfColorPoints : MutableList[ColorPoint] = new MutableList[ColorPoint]();

and call

addAll0(listOfColorPoints, listOfPoints).

Will this call compile or will a type error be reported at compile time? Explain briefly.
(b) With listOfColorPoints and listOfPoints defined as in the previous part of this ques-

tion, will the call

addAll1(listOfColorPoints, listOfPoints)

compile, where addAll1 is defined as follows:

def addAll1[T](src: MutableList[_ <: T], dest: MutableList[T]) : Unit = {
for (o <- src) {

dest += o;
}

}

Explain briefly.
(c) With listOfColorPoints and listOfPoints defined as in the previous part of this ques-

tion, will the call

3

addAll2[ColorPoint](listOfColorPoints, listOfPoints)

compile, where addAll2 is defined as follows:

def addAll2[T](src: MutableList[T], dest: MutableList[_ >: T]) : Unit = {
for (o <- src) {

dest += o;
}

}

Explain briefly. (The explicit instantation of T in the call to addAll2 is needed because of
how Scala infers types.)

(d) Suppose that your friend comes across the following general programming suggestion on the
web and asks you to explain. What can you tell your friend to explain the connection between
the programming advice and principles of subtyping, showing off your understanding gained
from CS 334?

Get and Put Principle: If you pass a generic structure to a function:
• Use an existential type with an upper bound (ie, [<: T]) when you only GET

values out of the structure.
• Use an existential type with a lower bound (ie, [>: T]) when you only PUT

values into the structure.
• Don’t use an existential type when you both GET and PUT values out of / into

the structure.

Pair Programming

P1. (40 points) . Undoable Commands
The goal of this problem is to implement the core data structures of a text editor using the
Command Design Pattern.

Text Editor In essence, a text editor manages a character sequence that can be changed in
response to commands issued by the user, such as inserting new text or deleting text. Typically,
these commands operate on the underlying character buffer at the current position of the cursor.
Thus, if the cursor is positioned at the beginning of the buffer, typing the string “moo” will cause
those letters to be inserted at the start of the buffer, and so on. This question explores the internal
design of a simple editor.
Most text editors involve a GUI and the user issues commands to the editor by keyboard and
mouse events. For us, however, the most interesting part of a text editor’s is what happens
behind the scenes. Therefore, our text editor will just be a simple command line program that
prompts you for edit commands. The program will print the contents of the text editor’s buffer,
including a “ˆ” to indicate the current cursor position, print the prompt “?”, and then wait for
you to enter a command. At one point in time, this was in fact how many text editors worked —
look up “ed text editor” in Wikipedia, for example (or run it on our lab machines...). The following
shows one run of our editor:

4

Sample Execution Description
Buffer: Buffer is initially empty, cursor at start

ˆ
? I This is a test. Insert “This is a test.” and move cursor to
Buffer: This is a test. immediately after inserted text

ˆ
? < 9 Move cursor 9 characters left
Buffer: This is a test.

ˆ
? > Move cursor 1 character right
Buffer: This is a test.

ˆ
? I n’t Insert “n’t”
Buffer: This isn’t a test.

ˆ
? > 3 Move cursor 3 characters right
Buffer: This isn’t a test.

ˆ
? D 4 Delete 4 characters.
Buffer: This isn’t a .

ˆ
? I cow Insert “cow”
Buffer: This isn’t a cow.

ˆ
? Q Quit

Here is a summary of all available editor commands (including some described below). The term
[num] indicates an optional number.

Command Description
I text Insert text at the current cursor, moving cursor to after the new

text.
D [num] Delete num characters to the right of cursor position. (If num

is missing, delete 1 character.)
< [num] Move the cursor num characters to the left. (If num is missing,

move 1 character.)
> [num] Move the cursor num characters to the right. (If num is miss-

ing, move 1 character.)
Q Quit
U Undo the previous edit command
P Print the history of edit commands
R Redo an undone edit command

I have provided a working program for all but the last three commands. Your job is to change
TextEditor to support multiple levels of undo and redo using the Command Design Pattern.
The sample execution below shows an example that uses “U” (undo) and “P” (print history). (We’ll
look at “R” (redo) at the very end of the problem.) Notice that you can undo multiple edits, not
simply the last one. To support this, the text editor must keep track of an edit command history
that permits you to undo as many commands from the history as you like. Undoing all commands
will lead you all the way back to the original empty buffer.
The starter code for this problem is divided into two classes:

• Buffer: This class manages the internal state of the editor’s buffer (ie, character sequence
and current cursor location), and it supports commands for getting/setting the cursor loca-
tion and for inserting/deleting text. Refer to the javadoc on the handouts page for more
details. You should not change this class.

5

Sample Execution Description
Buffer:

ˆ
? I Hello
Buffer: Hello

ˆ
? < 2
Buffer: Hello

ˆ
? D 2
Buffer: Hel

ˆ
? I p
Buffer: Help

ˆ
? U Undo the previous command.
Buffer: Hel

ˆ
? I ium
Buffer: Helium

ˆ
? P Print the command history.
History:

[Insert "Hello"]
[Move to 3]
[Delete 2]
[Insert "ium"]

Buffer: Helium
ˆ

? U Undo the last command ([Insert "ium"]).
Buffer: Hel

ˆ
? U Undo the last command ([Delete 2]).
Buffer: Hello

ˆ
? P Print the command history.
History:

[Insert "Hello"]
[Move to 3]

Buffer: Hello
ˆ

? Q

Figure 1: Sample run of the text editor with undo.

6

Daniel Barowy

• TextEditor: This class stores a Buffer named buffer. The processOneCommand()
method reads in a command from the user and performs the appropriate operation on
buffer by invoking one of the following methods:

– protected def setCursor(loc: Int): Unit

– protected def insert(text: String): Unit

– protected def delete(count: Int): Unit

– protected def undo(): Unit

– protected def redo(): Unit

– protected def printHistory(): Unit

These methods are all quite simple. For example, the insert method simply inserts the
text into buffer and repositions the cursor:

protected def insert(text: String) = {
buffer.insert(text);
buffer.setCursor(buffer.getCursor() + text.length());

}

The EditCommand Class To support undo, we first change the way the TextEditor oper-
ates on the underlying buffer. Rather than changing it directly, the TextEditor constructs
EditCommand objects that know how to perform the desired operations and — more impor-
tantly — know how to undo those operations. All EditCommand objects will be derived from
the EditCommand abstract class:

abstract class EditCommand(val target: Buffer) {

/** Perform the command on the target buffer */
def execute(): Unit;

/** Undo the command on the target buffer */
def undo(): Unit;

/** Print out what this command represents */
def toString(): String;

}

Here, the execute() method carries out the desired operation on the target buffer, and undo()
would perform the inverse operation. For example, to make insert undoable, the first step would
be to define an InsertCommand class in a new file InsertCommand.scala:

class InsertCommand(b: Buffer, val text: String) extends EditCommand(b) {
override def execute(): Unit = { ... }
override def undo(): Unit = { ... }
override def toString(): String = { ... }

}

The TextEditor would then perform code like the following inside insert:

protected def insert(text: String) = {
val command = new InsertCommand(buffer, text);
command.execute();
...

}

7

Assuming InsertCommand is implemented properly, the insertion would happen as before. How-
ever, the TextEditor can now remember that the last operation performed was the InsertCommand
we created, and we can undo it simply by calling that object’s undo() method. In essence, an
EditCommand object describes one modification to a Buffer’s state and how to undo that modifi-
cation. Supporting undo is then as simple as writing a new kind of EditCommand object for each
type of buffer modification you support.
And of course, to implement multiple levels of undo, you need to keep track of more than just the
last command object created...

Implementation Strategy I suggest tackling the implementation the following steps:

(a) Download the starter code from the handouts page. Compile the Scala files with the com-
mand fsc *.scala as usual. I have added some assert statements to the Buffer class
to aid in debugging. The general form is

assert(condition, { "message" })

You may find it useful to add similar asserts to your own code as well.
(b) Implement InsertCommand, DeleteCommand, and MoveCommand subclasses of EditCommand.

For each one, you must define: 1) execute(), (2) undo(), and (3) toString(). I recom-
mend holding off on undo() for the moment. Change TextEditor to create and execute
edit command objects appropriately.

(c) Extend TextEditor to remember the last command executed, and change TextEditor’s
undo() method to undo that command. Go back and implement undo for each type of
EditCommand.

(d) Once a single level of undo is working, extend TextEditor to support undoing multiple pre-
vious commands. Specifically, change TextEditor to maintain a history of commands that
have been executed and not undone. Also implement the printHistory() method to aid
in debugging. Your program should simply ignore undo requests if there are no commands
are in the history. You are free to use any Scala libraries you like in your implementation
(ie, any immutable or mutable collection class).

(e) The last task is to implement redo. Specifically, if you undo one or more commands but have
not yet performed any new operations on the buffer, you can redo the commands you undid:

8

Sample Execution Description
Buffer: hello

ˆ
? D 1
Buffer: helo

ˆ
? D 1
Buffer: hel

ˆ
? U Undo delete of “o”
Buffer: helo

ˆ
? U Undo delete of “l”
Buffer: hello

ˆ
? R Redo delete of “l”
Buffer: helo

ˆ
? R Redo delete of “o”
Buffer: hel

ˆ
? I p
Buffer: help

ˆ
? U Undo insert of “p”
Buffer: hel

ˆ
? U Undo redone delete of “o”
Buffer: helo

ˆ

Note that redoing undone commands is no longer possible if the buffer is changed in any
way. For example, if you insert text after undoing some command E, you should no longer be
able to redo command E:

Sample Execution Description
Buffer:

ˆ
? I moo
Buffer: moo

ˆ
? U
Buffer:

ˆ
? I hello Change buffer after undo
Buffer: hello

ˆ
? R Redo will have no effect
Buffer: hello

ˆ

Also, redone commands should be able to be subsequently undone:

9

Sample Execution Description
Buffer:

ˆ
? I 334
Buffer: 334

ˆ
? I cow
Buffer: 334cow

ˆ
? I moo
Buffer: 334cowmoo

ˆ
? U Undo insert of “moo”
Buffer: 334cow

ˆ
? U Undo insert of “cow”
Buffer: 334

ˆ
? R Redo insert of “cow”
Buffer: 334cow

ˆ
? R Redo insert of “moo”
Buffer: 334cowmoo

ˆ
? U Undo insert of “moo”
Buffer: 334cow

ˆ
? U Undo insert of “cow”
Buffer: 334

ˆ
? U Undo insert of “334”
Buffer:

ˆ
? R Redo insert of “334”
Buffer: 334

ˆ
? R Redo insert of “cow”
Buffer: 334cow

ˆ
? U Undo insert of “cow”
Buffer: 334

ˆ

Extend TextEditor to support multiple levels of redo. You should not need to change any
class other than TextEditor to implement this feature.

(f) Turn in your code using turnin as in the previous homeworks.

There are many extensions that would make our editor more “realistic”. One idea is listed below
as an extra credit problem. It should not require more than a few additional lines of code and
really highlights the elegance and simplicity of adopting this design pattern.

P2. (30 points) . Scheduling in Prolog
Scheduling TAs to TA help session slots is a surprisingly difficult problem. Here are some of the
important facts:

• There are three possible help session slots per day: 4-6pm, 6-8pm, 8-10pm.
• Every day has at least one staffed help session slot except Sunday, which has zero.
• Only one TA may work a given help session at a time.

10

• The TAs are: Alexis, Bo, Chloe, Drake, Esmeralda, Flint, Gemma, Hans, Idris.
• Every TA must work once per week.

TAs are also engaged in a number of extracurricular activities which interfere with some possible
schedules:

• Bo has clarinet practice all day Tuesday.
• Drake says that if he has to work two days in a row, he will quit.
• Esmeralda has track practice at 5am and has trouble staying awake past 8pm.
• Flint and Gemma have geology club meetings on Friday evenings from 6-10pm.

Write a Prolog program that generates a TA schedule. Note that there are a small number of
additional commonsense constraints that you will need to add to the set of facts above.
Hint: I suggest that you start by writing a smaller version of the problem by hand (e.g., two
TAs, two days, no other constraints). Once you understand the logic of the problem, scale the
problem up. You may find it helpful to generate your Prolog program using another programming
language like Scala.

P3. (10 points) Challenge Problem: Composable Commands
Here is one interesting extension to the basic Text Editor.
Most of the time, two consecutive commands of the same type are lumped together into a single
command. Thus, if I type “hello” followed immediately by “ there” into an editor (such as emacs),
the editor lumps them together into a single insertion command that removes all of “hello there”
from the buffer when undone. Similarly, if I perform two cursor movement commands in a row,
that is recorded in the undo history as a single command. Here is an example:

11

Sample Execution Description
Buffer:

ˆ
? I hel
Buffer: hel

ˆ
? I ium second insert composed with first
Buffer: helium

ˆ
? P
History:

[Insert "helium"]
Buffer: helium

ˆ
? U
Buffer:

ˆ
? R
Buffer: helium

ˆ
? <
Buffer: helium

ˆ
? < 2 second move composed with first

Buffer: helium
ˆ

? D 2
Buffer: helm

ˆ
? D 1 second delete composed with first
Buffer: hel

ˆ
? P
History:

[Insert "helium"]
[Move to 3]
[Delete 3]

Buffer: hel
ˆ

? I p
Buffer: help

ˆ
? U undo insert of “p”
Buffer: hel

ˆ
? U undo composed delete command
Buffer: helium

ˆ
? U undo composed move command
Buffer: helium

ˆ
? U undo composed insert of “helium”
Buffer:

ˆ

Implement composable commands. A good way to start is to extend the EditCommand class and
its subclasses to define the following method:

12

def compose(other : EditCommand) : Option[EditCommand]

This method either:

• returns None if the current command cannot be composed with other.
• returns a new command if the current command can be composed with other, because, for

example, they are both insert commands. In this case, the method should also change the
current command to be the composed command.

For example,

val c1 = new InsertCommand(target, "hel");
val c2 = new InsertCommand(target, "lo"));
c1.compose(c2) match {

case None => // can’t combine them
case Some(c3) => c3.execute();

}

would create the command c3 that inserts “hello” into the target. If we changed c2 to be a
DeleteCommand, the compose operation would return None. You may find it useful to test
whether an object has a certain type, which can be done in Scala with pattern matching, as in:

x match {
case i : InsertCommand => ... // x is an InsertCommand, now bound to i
case i : DeleteCommand => ... // x is an DeleteCommand, now bound to i
case i => ... // match all other types

}

13

