
Homework 7
Due Wednesday, 18 April

Handout 24
CSCI 334: Spring 2018

Notes

This homework has two types of problems:

Problems: You will turn in answers to these questions.

Pair Programming: This part involves writing both ML and Java code. You are required to work with
a partner for this section. I will assume that you plan to work with the same partner you worked
with on the last assignment unless you email me (dbarowy@cs.williams.edu) with your partner’s
name by the evening of Wednesday, April 11.

Turn-In Instructions

You must turn in your work for this assignment in two parts, one for the Problems part and one for
the Pair Programming part. You will be assigned two GitHub repositories.

Note that this assignment should be anonymized: neither your name nor your partner’s name
should appear in any of the files submitted with this assignment except the file “collaborators.txt”
(see below).

Problems: Problem sets should be typed up using LATEX and submitted using your
cs334 hw7 <username> repository. For example, if your GitHub username is dbarowy, then
your repository will be called cs334 hw7 dbarowy. Be sure that your work is committed and
pushed to your repository by Wednesday, April 18 at 11:59pm.
If you discuss the problem set with your partner or with a study group, please be sure to include
their names in a collaborators.txt file in your repository.

Pair Programming: Programming solutions should be typed up and submitted using your partner
repository. For example, if your GitHub username is dbarowy and you are working with a partner
whose username is wjannen, look for a repository called cs334 hw7 dbarowy-wjannen (user-
names will be in alphabetical order). Be sure that your work is committed and pushed to your
repository by Wednesday, April 18 at 11:59pm.

Reading

1. (Required) Read Mitchell, Chapter 8.1–8.2 and Chapter 10.

2. (Required) Read Mitchell, Chapter 12.4.1.

Problems

Q1. (10 points) . Removing a Method
Smalltalk has a mechanism for “undefining” a method. Specifically, if a class A has method m
then a programmer may cancel m in subclass B by writing

m:
self shouldNotImplement

With the above declaration of m in subclass B, any invocation of m on a B object will result in a
special error indicating that the method should not be used.

1

(a) (5 points) What effect does this feature of Smalltalk have on the relationship between inher-
itance and subtyping?

(b) (5 points) Suppose class A has methods m and n, and method m is canceled in subclass B.
Method n is inherited and not changed, but method n sends the message m to self. What do
you think happens if a B object b is sent a message n? There are two possible outcomes. See
if you can identify both, and explain which one you think the designers of Smalltalk would
have chosen and why.

Q2. (10 points) . Subtyping and Binary Methods
If there are no restrictions on how a method may be redefined in a subclass, then it is easy to
redefine a method such that it appears unproblematic.
This problem is illustrated using the following Point class and ColoredPoint subclass.

class name Point
class variables:
instance variables: xval yval
instance messages and methods xcoord ↑ xval

ycoord ↑ yval
origin

xval← 0
yval← 0

movex: dx movey: dy
xval← xval + dx.
yval← yval + dy

equal: pt
↑ (xval = pt xcoord & yval = pt ycoord)

class name ColoredPoint
class variables:
instance variables: color
instance messages and methods: color ↑ color

changecolor: newc color← newc
equal: cpt
↑ (xval = cpt xcoord & yval = cpt ycoord & color = cpt color)

The important part to notice is the way that equal is redefined in the ColoredPoint class.
This change would not be allowed in many other languages, but is allowed in Smalltalk. The
intuitive reason for redefining equal is that two colored points are equal only if they have the
same coordinates and are the same color.
Why is this redefinition a bad idea? p1 equal:p2 will not produce a runtime error when both
p1 and p2 are either Point or ColoredPoint objects, but it may fail when one is a Point and
the other is a ColoredPoint. It helps to consider all four combinations of p1 and p2 as Points
and ColoredPoints, and explain briefly how each message is interpreted.
Hint: Recall that the main principle associated with subtyping is substitutivity: if A is a subtype
of B, then wherever a B object is required in a program, an A object may be used instead without
producing a type error.

Q3. (8 points) . Function Subtyping
You will need to read Mitchell, 12.4.1 on pp. 355–356 in order to answer this question.
Assume that A <: B and B <: C. Which of the following subtype relationships involving the
function type B→ B hold in principle?

(a) (B→ B) <: (B→ B)

2

(b) (B→ A) <: (B→ B)

(c) (B→ C) <: (B→ B)

(d) (C→ B) <: (B→ B)

(e) (A→ B) <: (B→ B)

(f) (C→ A) <: (B→ B)

(g) (A→ A) <: (B→ B)

(h) (C→ C) <: (B→ B)

Q4. (10 points) . Smalltalk Implementation Decisions
In Smalltalk, each class contains a pointer to the class template. This template stores the names
of all the instance variables that belong to objects created by the class.

(a) (5 points) The names of the methods are stored next to the method pointers. But instance
variables are different. Why are the names of instance variables stored in the class, instead
of in the objects (next to the values for the instance variables)?

(b) (5 points) Each class’s method dictionary only stores the names of the methods explicitly
written for that class; inherited methods are found by searching up the superclass pointers
at run-time. What optimization could be done if a subclass contained all of the methods of
its superclass in its method dictionary? What are some of the advantages and disadvantages
of this optimization?

Pair Programming

P1. (20 points) . Continuation Passing Style
Continuation passing style is an alternative way to structure a computation that is especially
useful when designing recursive algorithms. A continuation is a function that represents the
evaluation of the “rest of the program” from a given point in a program.
Suppose you have the following SML code for a bubble sort algorithm:

fun bubble_inner [] = []
| bubble_inner [a] = [a]
| bubble_inner (a::b::xs) =

if b < a then b::(bubble_inner(a::xs)) else a::(bubble_inner(b::xs));

fun bubble_outer [] = []
| bubble_outer (x::xs) = bubble_inner (x::(bubble_outer xs));

fun bubblesort xs = bubble_outer xs;

The algorithm is divided into three pieces: a wrapper function called bubblesort that presents a
simple interface for users, a function representing the “outer loop” of the sort called bubble outer
and a function representing the “inner loop” of the sort called bubble inner. Since this is a func-
tional program, we use liberally use recursion instead of looping constructs.

(a) Rewrite the algorithm in continuation passing style (CPS). Remember that a CPS transform
usually involves

i. identifying work done before a recursive call,
ii. identifying work done after a recursive call,
iii. adding a continuation parameter k to the function,

3

iv. constructing a continuation representing the work done after the recursive call,
v. then re-writing the recursive call in tail form, passing the continuation as a parameter.

You may change the function signatures of bubble outer and bubble inner as required,
but note that the signature for bubblesort must remain the same. In other words, there
should be no discernable difference between the behavior of the original bubblesort and
your CPS-transformed bubblesort from the user’s perspective. For example, your bubblesort
should behave exactly as follows:

- val xs = [3,7,1,0,0,45,1001,2,˜100];
val xs = [3,7,1,0,0,45,1001,2,˜100] : int list
- bubblesort xs;
val it = [˜100,0,0,1,2,3,7,45,1001] : int list

You may not use callcc or throw to answer this part of the question. Also note that both
bubble inner and bubble outer must be in continuation passing form.

(b) Write a second continuation passing version of bubblesort that uses callcc and throw
instead of manually generating lambda expressions. You may find it helpful to use the
following definitions:

val callcc = SMLofNJ.Cont.callcc;
val throw = SMLofNJ.Cont.throw;

Again, ensure that bubblesort works exactly the same way (it does not expose continua-
tions to the user) and that both bubble outer and bubble inner are in CPS.

(c) Name one reason why we might want to represent a program in continuation passing style.
(d) What is the advantage of the callcc version of bubblesort over the ordinary CPS version?

P2. (20 points) . The Happy Herd

Scala in Lab. The scala command on the Unix machines will give you a “read-eval-print” loop,
as in Lisp and ML. You can also compile and run a whole file as follows. Suppose file A.scala
contains:

object A {
def main(args : Array[String]) : Unit = {

println(args(0));
}

}

You can compile the program with scalac A.scala, and then run it (and provide command-line
arguments) with scala A moo cow.

Resources. There are a number of Scala books on the bookshelf in the back corner of lab. You
may use them in lab, but please do not remove them the lab.
There is also lots of very detailed information available online (e.g., http://www.scala-lang.org
— just web search for “Scala Language”). I suggest that you look at tutorial-style descriptions of
the features of interest as well as the Scala Language Specification for some of the specifics.
Scala libraries are extensively documented at:

http://www.scala-lang.org/api/

4

In this first question we’ll use Scala answer a few questions about cows. Specifically the herd at
Cricket Creek Farm...

(a) First, write a program to read in and print out the data in the file cows.txt found in your
repository. Each line contains the id, name, and daily milk production of a cow from the
herd. (I’ve also included a cows-short.txt file that may be useful while debugging.)
The program should be in a file called Cows.scala that includes a single object definition.
Recall that objects are like classes, except that only a single instance is created.
One useful snippet of code is the following line.

val lines = scala.io.Source.fromFile("cows.txt").getLines();

We will use this to read the file. Try this out in the Scala interpreter. What type does lines
have? For convenience in subsequent processing, it will be useful to convert line into a list:

val data = lines.toList;

Print out the list and verify you are successfully reading all the data. Use a for loop. For
loops in Scala follow a familiar syntax:

scala> for (i <- 1 to 3) println(i);
1
2
3

(b) Print the data again, using the foreach method on lists.
(c) The for construct lets you do many other things as well, such as selectively filtering out the

elements while iterating. For example:

scala> for (i <- 1 to 5 if i%2==0) println(i);
2
4

Use such a for list to print all cows containing “s” in their name. Make the test be case
insensitive. Scala Strings support all of the same string operations as Java Strings. A few
useful ones here and below:

def String {
def contains(str : String) : Bool
def startsWith(str : String) : Bool
def toLowerCase() : String
def toUpperCase() : String

// split breaks up a line into pieces separated by separator.
// For ex: "A,B,C".split(",") -> ["A", "B", "C"]
def split(separator : String) : Array[String]

}

(d) Now print all cows containing “s” but not “h”. Multiple if clauses can be chained together,
as in “1 to 10 if i%2==0 if i%3==0”.

(e) Scala also supports list comprehensions:

val list = ...;
println (for (x <- list if ...) yield f(x));

Show an example of list comprehensions by computing something about the data with one.
(You may need to look up list comprehensions in the documentation for more detail...)

5

(f) Next, define a new calss in Cows.scala to store one cow, its id, and its daily milk production.

class Cow(s : String) {
def id = ...
def name = ...
def milk = ...
override def toString() = {

...
}

}

It takes in a string of the form “id,name,milk” from the data file and provides the three
functions shown. For toString, you may find formatting code like "%5d ".format(n)
handy – it formats the number n as a string and pads it to 5 characters.
Use a map operation on data to convert it from a list of strings to a list of Cows. Print the
data and makes sure it works.

(g) Use a list comprehension to print all cows who produce more then 4 gallons of milk per day.
(h) Use the sortWith method on Lists to sort the cows by id. Also use foldLeft to tally up

the milk production for the whole herd.

class List[A] {
def sortWith (lt: (A, A) => Boolean) : List[A]
def foldLeft [B] (z: B)(f: (B, A) => B) : B

}

Note that foldLeft is a polymorphic method with type parameter B. In your case, both A
and B will be Int. Also, foldLeft is curried, so you must call it specially, as in:

val list : List[Int] = ...;
val n : Int = ...;
list.foldLeft (n) ((x: Int, elem: Int) => ...)

(i) Finally, use the maxBy and minBy methods on your list of cows to find the cows with the
highest and lowest daily milk production.

P3. (15 points) . Ahoy, World!
You’ll now learn to speak like a pirate, with the help of Scala maps and a Translator class. The
program will take in an English sentence and convert it into pirate. For example, typing in

“pardon, where is the pub?”

gives you

“avast, whar be th’ Skull & Scuppers?”

Your repository constains the starter code Pirate.scala. You will be responsible for imple-
menting a Translator class, reading in the pirate dictionary, and processing the user input. It
will be easiest to proceed in the following steps:

(a) First, complete the Translator class. It has the following signature:

class Translator {
// Add the given translation from an english word to a pirate word
def += (english : String, pirate : String) : Unit

// Look up the given english word. If it is in the dictionary, return the
// pirate equivalent. Otherwise, just return english.
def apply(english : String) : String

6

// Print the dictionary to stdout
override def toString() : String

}

Note that we’re overloading the += and () operators for Translator. Thus, you use a
Translator object as follows:

val pirate = new Translator();
pirate += ("hello", "ahoy");
...
val s = pirate("hello");

If “hello” is in the dictionary, its pirate-translation is returned. Otherwise, your translator
should return the word passed in. Any non-word should also just be returned. Thus:

pirate("hello") ==> "hello"
pirate("moo") ==> "moo"
pirate(".") ==> "."

(b) Now, read in the full pirate dictionary from the pirate.txt data file, and print out the
resulting translation.

(c) Once you have the translator built, create a PirateInterpreter.scala program by chang-
ing the lines in main that process standard input, instead interactively processing text the
user types in. There are a few sample sentences in your repository. Here is an example:

$ cat sentence1.txt
pardon, where is the pub?
I’m off to the old buried treasure.

$ scala Pirate < sentence1.txt
avast, whar be th’ Skull & Scuppers?
I’m off to th’ barnacle-covered buried treasure.

7

