
Homework 5
Due Wednesday, 14 March

Handout 19
CSCI 334: Spring 2018

Notes

This homework has two types of problems:

Problems: You will turn in answers to these questions.

Pair Programming: This part involves writing ML code. You are required to work with a partner for
this section. I will assume that you plan to work with the same partner you worked with on the
last assignment unless you email me (dbarowy@cs.williams.edu) with your partner’s name by
the evening of Wednesday, March 7.

Turn-In Instructions

You must turn in your work for this assignment in two parts, one for the Problems part and one for
the Pair Programming part. You will be assigned two GitHub repositories.

Note that this assignment should be anonymized: neither your name nor your partner’s name
should appear in any of the files submitted with this assignment except the file “collaborators.txt”
(see below).

Problems: Problem sets should be typed up using LATEX and submitted using your
cs334 hw5 <username> repository. For example, if your GitHub username is dbarowy, then
your repository will be called cs334 hw5 dbarowy. Be sure that your work is committed and
pushed to your repository by Wednesday, March 14 at 11:59pm.
If you discuss the problem set with your partner or with a study group, please be sure to include
their names in a collaborators.txt file in your repository.

Pair Programming: Programming solutions should be typed up and submitted using your partner
repository. For example, if your GitHub username is dbarowy and you are working with a partner
whose username is wjannen, look for a repository called cs334 hw5 dbarowy-wjannen (user-
names will be in alphabetical order). Be sure that your work is committed and pushed to your
repository by Wednesday, March 14 at 11:59pm.
Standard ML files should have a “.sml” suffix. For example, the pair programming problem P1a
should appear as the file p1a.sml. Your code should be documented using comments. Comment
lines appear inside (* and *) braces.

Reading

1. (Required) Read Mitchell, Chapters 6 and 7.

Problems

Q1. (25 points) . Infer the Types
Infer the ML types for the following function using the Hindley-Milner algorithm.

fun f (x::xs) = (x,x)::(f xs)
| f nil = nil

1

Specifically,

(a) convert the function to a λ expression;
(b) draw the corresponding parse tree for the λ expression;
(c) using a table, label each subexpression with a type variable;
(d) generate constraints using the λ-calculus constraint rules;
(e) and solve the constraints, yielding the type of f.

Note that this problem includes a case not discussed in class, but which you can find in Mitchell
pp. 135–145.
Assume that the cons operator :: is a curried function of type ’a → ’a list → ’a list.
You may also assume that the tuple constructor (a,b) is a curried function of type ’a → ’b →
’a*’b.

Q2. (10 points) . Static and Dynamic Scope
Consider the following program fragment, written in ML:

1 let val x = 2 in
2 let val f = fn y => x + y in
3 let val x = 7 in
4 x +
5 f x
6 end
7 end
8 end;

(a) Under static scoping, what is the value of x + f x in this code? During the execution of this
code, the value of x is needed three different times (on lines 2, 4, and 5). For each line where
x is used, state what numeric value is used when the value of x is requested and explain
why these are the appropriate values under static scoping.

(b) Under dynamic scoping, what is the value of x + f x in this code? For each line where x
is used, state which value is used for x and explain why these are the appropriate values
under dynamic scoping.

Q3. (15 points) . Function Calls and Memory Management
This question asks about memory management in the evaluation of the following statically-
scoped ML expression.

val x = 5;
fun f(y) = (x+y)-2;
fun g(h) = let val x = 7 in h(x) end;
let val x = 10 in g(f) end;

(a) (12 points) Fill in the missing information in the following depiction of the run-time stack
after the call to h inside the body of g. Remember that function values are represented by
closures, and that a closure is a pair consisting of an environment (pointer to an activation
record) and compiled code.
In this drawing, a bullet (•) indicates that a pointer should be drawn from this slot to the
appropriate closure or compiled code. Since the pointers to activation records cross and could
become difficult to read, each activation record is numbered at the far left. In each activation
record, place the number of the activation record of the statically enclosing scope in the slot
labeled “access link.” The first two are done for you. Also use activation record numbers for
the environment pointer part of each closure pair. Write the values of local variables and
function parameters directly in the activation records.

2

Activation Records Closures Compiled Code

(1) access link (0)
x

(2) access link (1)
f •

(3) access link () 〈 () , • 〉
g • code for f

(4) access link () 〈 () , • 〉
x

(5) g(f) access link ()
h • code for g
x

(6) h(x) access link ()
y

(b) (3 points) What is the value of this expression? Why?

Pair Programming

P1. (5 points) . Lisp Conditional
A Lisp programmer learning ML doesn’t like the syntax of the ML conditional expression, if
...then ...else. Instead, the programmer decides to define a conditional function:

fun Cond(test, trueCase, falseCase) =
if test then trueCase else falseCase;

You foresee problems if this programmer uses this Cond function exclusively in place of if
...then ...else. Write two short programs that demonstrate the problem.

(a) Write a short program using Cond.
(b) Write the supposedly equivalent program using if ...then ...else that produces a

different result.

P2. (10 points) . Exceptions in ML
The function stringToNum defined below uses two auxiliary functions to convert a string of digits
into a non-negative integer.

(* Convert one character to a numeric digit. *)
fun charToNum c = ord c - ord #"0";

fun calcList (nil,n) = n
| calcList (fst::rest,n) =

calcList(rest,10 * n + charToNum fst);

(* Convert a string of digits to a number. The explode function
converts a string to a list of characters. *)

fun stringToNum s = calcList(explode s, 0);

For instance, stringToNum "3405" returns the integer 3405. (The function explode converts
a string into a list of characters, and ord returns the ASCII integer value for a character.)

3

Unfortunately, calcList returns a spurious result if the string contains any non-digits. For in-
stance, stringToNum "3a05" returns 7905, while stringToNum " 405" returns ˜15595. This
occurs because charToNum will convert any character, not just digits. We can attempt to fix this
by having charToNum raise an exception if it is applied to a non-digit.

(a) Revise the definition of charToNum to raise an exception, and then modify the function
stringToNum so that it handles the exception, returning ˜1 if there is a non-digit in the
string. You should make no changes to calcList.

(b) Implement ML functions to provide the same behavior (including returning ˜1 if the string
includes a non-digit) as in the first part, but without using exceptions. While you may change
any function, try to preserve as much of the structure of the original program as possible.

(c) Which implementation do you prefer? Why? Answer this as a comment in the code.

P3. (20 points) . Folding Fun
Use foldl or foldr to solve the following problems.

(a) Write a function concatWords: string list -> string. This function should return
return a string with all strings in the list concatenated:

- concatWords nil;
val it = "" : string
- concatWords ["Three", "Short", "Words"];
val it = "ThreeShortWords" : string

(b) Write a function words length: string list -> int. This function should return the
total length of all words appearing in a list of strings. For example:

- words_length nil;
val it = 0 : int
- words_length ["Three", "Short", "Words"];
val it = 15 : int

(c) Can we always use foldl in place of foldr? If yes, explain. If no, give an example function
f, list l, and initial value v such that foldr f v l and foldl f v l behave differently.

(d) Write a function count: ’’a -> ’’a list -> int. It computes the number of times a
value appears in a list. For example:

- count "sheep" ["cow", "sheep", "sheep", "goat"];
val it = 2 : int
- count 4 [1,2,3,4,1,2,3,4,1,2,3,4];
val it = 3 : int

(e) Write a function partition: int -> int list -> int list * int list that takes
an integer p and a list of integers l, and that returns a pair of lists containing the elements
of l smaller than p and those greater than or equal to p. The ordering of the original list
should be preserved in the returned lists. (We wrote a recursive form during lecture as part
of quicksort.)

- partition 10 [1,4,55,2,44,55,22,1,3,3];
val it = ([1,4,2,1,3,3],[55,44,55,22]) : int list * int list

(f) Write a function poly: real list -> (real -> real) that takes a list of reals [a0,
a1, ..., an−1] and returns a function that takes an argument b and evaluates the poly-
nomial

a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1

at x = b; that is, it computes
∑n−1

i=0 aibi. For example,

4

- val g = poly [1.0, 2.0];
val it = fn: real -> real
- g(3.0);
val it = 7.0: real
- val g = poly [1.0, 2.0, 3.0];
val it = fn: real -> real
- g(2.0);
val it = 17.0: real

(Hint: a0 + a1x + a2x
2 + a3x

3 = a0 + x(a1 + x(a2 + xa3)). This is an example of Horner’s
Rule. Horner’s Rule demonstrates that we can evaluate a degree n polynomial with only
O(n) multiplies.)

5

