
Homework 4
Due 7 March

Handout 16
CSCI 334: Spring 2018

Notes

This homework has three types of problems:

Self Check: You are strongly encouraged to think about and work through these questions, and may
do so with a partner. Do not submit answers to them.

Problems: You will turn in answers to these questions.

Pair Programming: This part involves writing ML code. You are required to work with a partner for
this section. I will assume that you plan to work with the same partner you worked with on the
last assignment unless you email me (dbarowy@cs.williams.edu) with your partner’s name the
evening of Wednesday, Feb 28.

Turn-In Instructions

You must turn in your work for this assignment in two parts, one for the Problems part and one for
the Pair Programming part. You will be assigned two GitHub repositories.

Note that this assignment should be anonymized: neither your name nor your partner’s name
should appear in any of the files submitted with this assignment except the file “collaborators.txt”
(see below).

Problems: Problem sets should be typed up using LATEX and submitted using your
cs334 hw4 <username> repository. For example, if your GitHub username is dbarowy, then
your repository will be called cs334 hw4 dbarowy. Be sure that your work is committed and
pushed to your repository by Wednesday, March 7 at 11:59pm.
If you discuss the problem set with your partner or with a study group, please be sure to include
their names in a collaborators.txt file in your repository.

Pair Programming: Programming solutions should be typed up and submitted using your partner
repository. For example, if your GitHub username is dbarowy and you are working with a partner
whose username is wjannen, look for a repository called cs334 hw4 dbarowy-wjannen (user-
names will be in alphabetical order). Be sure that your work is committed and pushed to your
repository by Wednesday, March 7 at 11:59pm.
Standard MLfiles should have a “sml” suffix. For example, the pair programming problem P1
should appear as the file p1.sml. Your code should be documented using comments. Comment
lines appear inside (* and *) braces.

Reading

1. (Required) Read Mitchell, Chapter 5.

2. (As necessary) Read Ullman or other ML references, as needed for the programming questions.

Self Check

1

S1. Higher-Order ML Types
Explain the ML type for each of the following declarations:

(a) fun a b c = b c

(b) fun h () = "hello"

(c) fun d e = map (a h)

(d) fun f xs = map (fn x => ()) xs

What is the output of the expression d 1 (f [1,2,3,4])?

Problems

Q1. (10 points) . ML Map for Trees

(a) The binary tree datatype

datatype ′a tree = LEAF of ′a |
NODE of ′a tree ∗ ′a tree;

describes a binary tree for any type, but does not include the empty tree (i.e., each tree of
this type must have at least a root node).
Write a function maptree that takes a function as an argument and returns a function that
maps trees to trees, by mapping the values at the leaves to new values, using the function
passed in as a parameter. In more detail, if f is a function that can be applied to the leaves
of tree t, and t is the tree on the left, then maptree f t should result in the tree on the
right.

�
�
A
A

A
A

�
�

A
A

�
�

A
A

�
�

�
�

A
A

•

• •

• •

m i

l n

e r

�
�
A
A

A
A

�
�

A
A

�
�

A
A

�
�

�
�

A
A

•

• •

• •

f(m) f(i)

f(l) f(n)

f(e) f(r)

For example, if f is the function fun f(x)=x+1 then
maptree f (NODE(NODE(LEAF 1,LEAF 2),LEAF 3))

should evaluate to NODE(NODE(LEAF 2,LEAF 3),LEAF 4). Explain your definition in one
or two sentences.

(b) What is the type ML gives to your function? Why isn’t it the expected type (’a → ’a) →
’a tree → ’a tree?

You may want to include Control.Print.printDepth:= 100; at the top of your file, so that
datatypes print completely.

Q2. (10 points) . ML Reduce for Trees
The binary tree datatype

datatype ′a tree = LEAF of ′a |
NODE of ′a tree ∗ ′a tree;

2

describes a binary tree for any type, but does not include the empty tree (i.e., each tree of this
type must have at least a root node).
Write a function

reduce : (′a ∗ ′a→ ′a) → ′a tree→ ′a

that combines all the values of the leaves using the binary operation passed as a parameter. In
more detail, if oper : ′a ∗ ′a→ ′a and t is the nonempty tree on the left in this picture,

�
�
A
A

A
A

�
�

A
A

�
�

A
A

�
�

�
�

A
A

•

• •

• •

a b

c d

e f

�
�
A
A

A
A

�
�

A
A

�
�

A
A

�
�

�
�

A
A

oper

oper oper

oper oper

a b

c d

e f

then reduce oper t should be the result obtained by evaluating the tree on the right. For example,
if f is the function

fun f(x : int, y : int) = x+ y;

then reduce f (NODE(NODE(LEAF 1, LEAF 2), LEAF 3)) = (1 + 2) + 3 = 6. Explain your definition of
reduce in one or two sentences.

Q3. (10 points) . Currying
This problem asks you to show that the ML types ′a→ (′b→ ′c) and (′a ∗ ′b)→ ′c are essentially
equivalent.

(a) Define higher-order ML functions

Curry : ((′a ∗ ′b)→ ′c)→ (′a→ (′b→ ′c))

and
UnCurry : (′a→ (′b→ ′c))→ ((′a ∗ ′b)→ ′c)

(b) For all functions f : (′a ∗ ′b) → ′c and g : ′a → (′b → ′c), the following two equalities should
hold (if you wrote the right functions):

UnCurry(Curry(f)) = f

Curry(UnCurry(g)) = g.

Explain why each is true, for the functions you have written. Your answer can be 3 or 4
sentences long. Try to give the main idea in a clear, succinct way. We are more interested in
the insight than in the number of words. Be sure to consider termination behavior as well.

Note that you MUST explain why the equations hold to receive full credit.
Hint: One way to do this is to apply both sides of each equation to the same argument(s) and
describe how each side evaluates to the same term. For example, show that

UnCurry(Curry(f))(s, t) = f(s, t)

and
Curry(UnCurry(g)) s t = g s t

for any s and t.

3

Pair Programming

P1. (20 points) . Low-Level Data Representation
The programming languages group in the computer science department at Williams College has
recently realized that programming is too complicated and wants to solve the problem. Specifi-
cally, programming is too complicated because there are just too many darn letters in a program.
As an alternative, the department PL has whizzed up a new language composed entirely of the
letters e, p, h, r, a, i, m, and ! (for extra effect). The department considers this new language,
which is called “Breph,” such a resounding success that all future introductory programming
classes will use it.
Since you’ve signed up to be a 134 teaching assistant, the department asks you to write a simple
variant on Hello world in Breph. Specifically, you must write a program that prints

Hello <your first name> <your last name>

The department gives you its breph interpreter (see starter code in repository) and a copy of the
language documentation, reproduced below.
Running a Breph Program
Breph programs end in the suffix “.moo”. To run a program, type the following at the command
prompt:
$./breph <yourprogram>.moo

Breph Abstract Machine:
Breph uses simple machine model consisting of

(a) the program text (supplied by the programmer),
(b) a pointer to the current instruction (initialized to point at the first instruction in the pro-

gram),
(c) an array of 1-byte memory cells of (effectively) unlimited size (all initialized to zero),
(d) a movable data pointer (initialized to point to the leftmost byte of the array)
(e) input, connected to the user’s keyboard,
(f) and output, connected to the user’s terminal, which prints bytes using their ASCII character

encoding.

Initial Abstract Machine State:
Assume that the equivalent of the following Java code is run before the user’s program runs to
set the machine’s initial state.

char[] a = new char[∞];
Arrays.fill(a, ’\0’);
int p = 0;

Breph Machine Instructions:
Breph has the following machine instructions. Since the department realizes that TAs took 134
with Java, they’ve also provided a list of equivalent Java expressions to aid in the transition to
Breph.
Note that every instruction increments the instruction pointer after performing its function ex-
cept i and m, which may jump the pointer to some other location (see table).

4

Character Semantics Java equivalent expression
e Increment the data pointer (to point to the next cell

to the right).
++p;

p Decrement the data pointer (to point to the next cell
to the left).

--p;

h Increment (increase by one) the byte at the data
pointer.

a[p] = a[p] + 1;

r Decrement (decrease by one) the byte at the data
pointer.

a[p] = a[p] - 1;

a Accept one byte of input, storing its value in the byte
at the data pointer.

a[p] = (char)System.in.read();

i If the byte at the data pointer is zero, then instead
of moving the instruction pointer forward to the next
command, jump it forward to the command after the
matching m command.

while (a[p] != 0) {

m If the byte at the data pointer is nonzero, then in-
stead of moving the instruction pointer forward to
the next command, jump it back to the command af-
ter the matching i command.

}

! Print the byte (using ASCII encoding) at the data
pointer.

System.out.print(a[p]);

ASCII Character Encoding

5

P2. (50 points) . Random Art

This problem brings together a number of topics we have studied, including grammars, parse
trees, and evaluation. Your job is to write an ML program to construct and plot randomly gener-
ated functions. The language for the functions can be described by a simple grammar:

e ::= x | y | sinπe | cosπe | (e+ e)/2 | e ∗ e

Any expression generated by this grammar is a function over the two variables x and y. Note
that any function in this category produces a value between -1 and 1 whenever x and y are both
in that range.
We can characterize expressions in this grammar with the following ML datatype:

datatype Expr =
VarX

| VarY
| Sine of Expr
| Cosine of Expr
| Average of Expr * Expr
| Times of Expr * Expr;

Note how this definition mirrors the formal grammar given above; for instance, the constructor
Sine represents the application of the sin function to an argument multiplied by π. Interpreting
abstract syntax trees is much easier than trying to interpret terms directly.
Your starter code directory should include the expr.sml and art.sml starter files.

(a) Printing Expressions: The first two parts require that you edit and run only expr.sml.
First, write a function

exprToString : Expr -> string

to generate a printable version of an expression. For example, calling exprToString on the
expression

Times(Sine(VarX),Cosine(Times(VarX,VarY)))

should return a string similar to “sin(pi*x)*cos(pi*x*y)”. The exact details are left to
you. (Remember that string concatenation is performed with the “ˆ” operator.)
Test this function on a few sample inputs before moving to the next part.

6

(b) Expression Evaluation: Write the function

eval : Expr -> real*real -> real

to evaluate the given expression at the given (x, y) location. You may want to use the func-
tions Math.cos and Math.sin, as well as the floating-point value Math.pi. (Note that an
expression tree represented, e.g., as Sine(VarX) corresponds to the mathematical expres-
sion sin(πx), and the eval function must be defined appropriately.)
Test this function on a few sample inputs before moving on to the next part. Here are a few
sample runs:

- eval (Sine(Average(VarX,VarY))) (0.5,0.0);
val it = 0.707106781187 : real
- eval sampleExpr (0.1,0.1);
val it = 0.569335014033 : real

(c) Driver Code: The art.sml file includes the doRandomGray and doRandomColor func-
tions, which generate grayscale and color bitmaps respectively. These functions want to loop
over all the pixels in a (by default) 501 by 501 square, which naturally would be implemented
by nested for loops. In art.sml, complete the definition of the function

for : int * int * (int -> unit) -> unit

The argument triple contains a lower bound, an upper bound, and a function; your code
should apply the given function to all integers from the lower bound to the upper bound,
inclusive. If the greater bound is strictly less than the lower bound, the call to for should
do nothing. Implement this function using imperative features. In other words, use a ref
cell and the while construct to build the for function.
Note: It will be useful to know that you can use the expression form (e1 ; e2) to execute
expression e1, throw away its result, and then execute e2. Thus, inside an expression a
semicolon acts exactly like comma in C or C++. Also, the expression “()” has type unit, and
can be used when you want to “do nothing”.
Test your code with a call like the following:

for (2, 5, (fn x => (print ((Int.toString(x)) ˆ "\n"))));

It should print out the numbers 2,3,4, and 5.
Now produce a grayscale picture of the expression sampleExpr. You can do this by calling
the emitGrayscale function. Look at doRandomGray to see how this function is used.
If you get an uncaught exception Chr error while producing a bitmap, that is an indica-
tion that your eval function is returning a number outside the range [-1,1].
Note: The type assigned to your for function may be more general than the type described
above. How could you force it to have the specified type, and why might it be useful to do
that? (You don’t need to submit an answer to this, but it is worth understanding.)

(d) Viewing Pictures: You can view pgm files, as well as the ppm files described below, on our
Linux computers with the eog program. To view the output from a non-Unix machine, or
to post them on a web, etc., you might need to first convert the file to jpeg format with the
following command:

convert art.pgm art.jpg

The convert utility will work for both .ppm and .pgm files.
(e) Generating Random Expressions: Your next programming task is to complete the defi-

nition of

build(depth, rand) : int * RandomGenerator -> Expr

7

The first parameter to build is a maximum nesting depth that the resulting expression
should have. A bound on the nesting depth keeps the expression to a manageable size;
it’s easy to write a naive expression generator which can generate incredibly enormous ex-
pressions. When you reach the cut-off point (i.e., depth is 0), you can simply return an
expression with no sub-expressions, such as VarX or VarY. If you are not yet at the cut-off
point, randomly select one of the forms of Expr and recursively create its subexpressions.
The second argument to build is a function of type RandomGenerator. As defined at the
top of art.sml, the type RandomGenerator is simply a type abbreviation for a function
that takes two integers and returns an integer:

type RandomGenerator = int * int -> int

Call rand(l,h) to get a number in the range l to h, inclusive. Successive calls to that
function will return a sequence of random values. Documentation in the code describes how
to make a RandomGenerator function with makeRand. You may wish to use this function
while testing your build function.
Once you have completed build, you can generate pictures by calling the function

doRandomGray : int * int * int -> unit

which, given a maximum depth and two seeds for the random number generator, generates
a grayscale image for a random image in the file art.pgm. You may also run

doRandomColor : int * int * int -> unit

which, given a maximum expression depth and two seeds for the random number generator,
creates three random functions (one each for red, green, and blue), and uses them to emit a
color image art.ppm. (Note the different filename extension).
A few notes:
• The build function should not create values of the Expr datatype directly. Instead,

use the build functions buildX, buildY, buildSine, etc. that I have provided in
expr.sml. This provides a degree of modularity between the definition of the Expr
datatype and the client.
• A depth of 8 – 12 is reasonable to start, but experiment to see what you think is best.
• If every sort of expression can occur with equal probability at any point, it is very likely

that the random expression you get will be either VarX or VarY, or something small
like Times(VarX,VarY). Since small expressions produce boring pictures, you must
find some way to prevent or discourage expressions with no subexpressions from being
chosen “too early”. There are many options for doing this— experiment and pick one
that gives you good results.
• The two seeds for the random number generators determine the eventual picture, but

are otherwise completely arbitrary.
(f) Extensions: Extend the Expr datatype with at least three more expression forms, and add

the corresponding cases to exprToString, eval, and build. The two requirements for this
part are that:

i. these expression forms must return a value in the range [-1,1] if all subexpressions have
values in this range, and

ii. at least one of the extensions must be constructed out of 3 subexpressions, ie. one of the
new build functions must have type Expr * Expr * Expr -> Expr.

There are no other constraints; the new functions need not even be continuous. Be creative!
Make sure to comment your extensions.

8

P3. (10 points) . Challenge Problem
This question explores an alternative way of representing expressions in the random art program.
Create a new file expr-func.sml which, like the file expr.sml, defines the Expr representa-
tion and basic operations on it. In this version, the definition of the type Expr should be not a
datatype, but:

type Expr = real * real -> real

That is, instead of the symbolic representation used by expr.sml, this implementation will rep-
resent each function in x and y directly as an SML function of two real arguments. Redefine the
following operations on the new type:

• exprToString

• eval

• buildX, buildY, buildSine, etc.

The eval function in particular becomes much, much simpler than in expr.sml, but the exprToString
function cannot be written successfully, since there is no way to convert an ML function to a
string. Thus, your implementation of this function can return something like "<function>" or
"unknown". To test your code, replace

use "expr.sml";

at the top of art.sml with

use "expr-func.sml";

9

