
Homework 3
Due 28 Feb

Handout 13
CSCI 334: Spring 2018

Notes

This homework has three types of problems:

Self Check: You are strongly encouraged to think about and work through these questions, and may
do so with a partner. Do not submit answers to them.

Problems: You will turn in answers to these questions.

Pair Programming: This part involves writing ML code. You are required to work with a partner
for this section. I will assume that you plan to work with the same partner you worked with on
Homework #2 unless you email me (dbarowy@cs.williams.edu) with your partner’s name by the
evening of Wednesday, Feb 21.

Turn-In Instructions

You must turn in your work for this assignment in two parts, one for the Problems part and one for
the Pair Programming part. You will be assigned two GitHub repositories.

Note that this assignment should be anonymized: neither your name nor your partner’s name
should appear in any of the files submitted with this assignment except the file “collaborators.txt”
(see below).

Problems: Problem sets should be typed up using LATEX and submitted using your hw3-<username>
repository. For example, if your GitHub username is dbarowy, then your repository will be called
hw3-dbarowy. Be sure that your work is committed and pushed to your repository by Wednesday,
February 28 at 11:59pm.
If you discuss the problem set with your partner or with a study group, please be sure to include
their names in a collaborators.txt file in your repository.

Pair Programming: Programming solutions should be typed up and submitted using your partner
repository. For example, if your GitHub username is dbarowy and you are working with a partner
whose username is wjannen, look for a repository called hw3-dbarowy-wjannen (usernames
will be in alphabetical order). Be sure that your work is committed and pushed to your repository
by Wednesday, February 28 at 11:59pm.
Standard ML files should have a “.sml” suffix. For example, the pair programming problem P1a
should appear as the file p1a.ml. Your code should be documented using comments. Comment
lines appear inside “(*” and “*)” braces.

Reading

1. (Required) Read Mitchell, skim 4.4–4.5, 5, skim 6.1.

2. (As necessary) Read A Gentle Introduction to ML by Andrew Cumming.

3. (Optional) J. Backus, Can Programming be Liberated from the von Neumann Style?, Comm.
ACM 21, 8 (1978) 613-641. You can find this on the CSCI 334 web site.

Self Check

1

S1. ML Types
Explain the ML type for each of the following declarations:

(a) fun a(x,y) = x+2*y;

(b) fun b(x,y) = x+y/2.0;

(c) fun c(f) = fn y => f(y);

(d) fun d(f,x) = f(f(x)));

(e) fun e(x,y,b) = if b(y) then x else y;

Since you can simply type these expressions into an ML interpreter to determine the type, be
sure to understand why the interpreter derives a given type.

Problems

Q1. (20 points) . Lazy Evaluation and Parallelism
In a “lazy” language, a function call f(e) is evaluated by passing the unevaluated argument to
the function body. If the value of the argument is needed, then it is evaluated as part of the
evaluation of the body of f. For example, consider the function g defined by

fun g(x,y) =
if

x = 0
then 1

else if
x + y
= 0
then 2

else
3;

Assume, in the above function, that each separate line can be entirely performed in a single step
(i.e., in a single tick of the CPU’s clock).
In a lazy language, the call g(3, 4+ 2) is evaluated by passing some representation of the expres-
sions 3 and 4 + 2 to g. The test x = 0 is evaluated using the argument 3. If x = 0 were true,
the function would return 1 without ever computing 4 + 2. Since the test is false, the function
must evaluate x + y, which now causes the actual parameter 4 + 2 to be evaluated. Some ex-
amples of lazy functional languages are Miranda, Haskell and Lazy ML; these languages do not
have assignment or other imperative features with side effects. In other words, they are “pure”
functional languages.
If we are working in a pure functional language, then for any function call f(e1, e2), we can
evaluate e1 before e2 or e2 before e1. Since neither can have side-effects, neither can affect the
value of the other. However, if the language is lazy, we might not need to evaluate both of these
expression. Therefore, if something goes wrong in the evaluation of both expressions (e.g., one
expression does not terminate), the entire program itself my still terminate.
As Backus argues in his Turing Award lecture, an advantage of pure functional languages is
the possibility of parallel evaluation. For example, in evaluating a function call f(e1, e2) we can
evaluate both e1 and e2 in parallel. In fact, we could even start evaluating the body of f in parallel
as well.
In the questions below, I suggest that you draw a table representing all concurrent threads of ex-
ecution. Each row should represent what the CPU executes in a single step. Each column should
represent a separate thread. When a thread halts (because there is nothing left to compute),
simply repeat the value in the thread’s column until all other threads have halted. For example,

2

g e1 e2
if 3 4 + 2
.

(a) (5 points) Assume we evaluate g(e1, e2) by starting to evaluate g, e1, and e2 in parallel, where
g is the function defined above. Is it possible that one process will have to wait for another to
complete? How can this happen? If it can happen, demonstrate by showing a sample table.

(b) (5 points) Suppose the value of e1 is zero and evaluation of e2 terminates with an error. In the
normal (i.e., eager) evaluation order that is used in C, Java, and other common languages,
evaluation of the expression g(e1, e2) will terminate in error. What will happen with lazy
evaluation? Parallel evaluation? Again, draw sample tables, keeping in mind that lazy
evaluation only has a single thread (i.e., your table should only have one column).

(c) (6 points) Suppose you want the same value, for every expression, as lazy evaluation, but
you want to evaluate expressions in parallel to take advantage of your new pocket-sized
multiprocessor. What actions should happen, if you evaluate g(e1, e2) by starting g, e1, and
e2 in parallel, if the value of e1 is zero and evaluation of e2 terminates in an error?

(d) (4 points) Suppose, now, that the language contains side-effects. What if e1 is z, and e2
contains an assignment to z. Can you still evaluate the arguments of g(e1, e2) in parallel? If
you think you cannot, provide a table with a counterexample.

Q2. (5 points) . Algol 60 Procedure Types
In Algol 60, the type of each formal parameter of a procedure must be given. However, proc is
considered a type (the type of procedures). This is much simpler than the ML types of function
arguments. However, this is really a type loophole; since calls to procedure parameters are not
fully type checked, Algol 60 programs may produce run-time type errors.
Write a procedure declaration for Q which causes the following program fragment to produce a
run-time type error.

proc P (proc Q)
begin Q(true) end;

P(Q);

where true is a boolean value. Explain why the procedure is statically type correct, but produces
a run-time type error. (You may assume that adding a boolean to an integer is a run-time type
error.)

Q3. (10 points) . Translation into Lambda Calculus
A programmer is having difficulty debugging the following Python program. In theory, on an
“ideal” machine with infinite memory, this program would run forever. In practice, this program
crashes because it runs out of memory, since extra space is required every time a function call is
made.

def f(g):
g(g)

def mymain():
x = f(f)
print x

Explain the behavior of the program by translating the definition of f into lambda calculus and
then reducing the application f(f). Note that an equivalent program in a statically typed lan-
guage like Java or ML would not compile.

3

Pair Programming

For these problems, use the ML interpreter on the Unix machines in the computer lab. You can run
ML on the file “example.sml” as follows:

sml < example.sml

at the command line. As with Lisp, the ML compiler will process the program in the file and print the
result. For example, if “example.sml” contains

(* double an integer *)
fun double (x) = x * x;

(* return the length of a list *)
fun listLength (nil) = 0

| listLength (l::ls) = 1 + listLength ls
;

double (10);
listLength (1::[2,3,4]);

the command “sml < example.sml” will produce the following:

val double = fn : int -> int
val listLength = fn : ’a list -> int
val it = 100 : int
val it = 4 : int

You can also run “sml” and enter in declarations and expressions to evaluate at the prompt.
Start early on this part so you can see the TA or me if you have problems understanding the

language. There are many valuable resources available to help you learn ML:

• The examples in the Mitchell book and in your notes.

• Ullman’s Elements of ML Programming book. I will leave several copies in the Unix lab for your
reference. Do not remove these books from the lab.

• Several very good tutorials listed on the course web page.

A few additional details:

• Emacs on the Unix machines will provide auto-formatting and syntax highlighting while editing
ML files. Be sure your file names end with “.sml” so Emacs can recognize them as
containing ML code.

• Comments in ML are delineated by (* and *).

• Put the following line at the top of your ML files to ensure that large data types and lists are fully
printed:

Control.Print.printDepth := 100;
Control.Print.printLength := 100;

• Unless otherwise specified, you should use pattern matching where possible.

• There are several thought questions in the descriptions below. Please answer these questions
with your partner in comments in the code.

4

P1. (10 points) . Basic Functions in ML

(a) Define a function sumSquares that, given a nonnegative integer n, returns the sum of the
squares of the numbers from 1 to n:

- sumSquares(4)
val it = 30 : int
- sumSquares(5)
val it = 55 : int

(b) Define a function listDup that takes an element, e, of any type, and a non-negative number,
n, and returns a list with n copies of e:

- listDup("moo", 4);
val it = ["moo","moo","moo","moo"] : string list
- listDup(1, 2);
val it = [1,1] : int list
- listDup(listDup("cow", 2), 2);
val it = [["cow","cow"],["cow","cow"]] : string list list

(c) Your listDup will have a type like ’a * int -> ’a list. What does this type mean and
why is it the appropriate type for your function? Answer this question as a comment in the
code.

P2. (10 points) . Zipping and Unzipping

(a) Write the function zip to compute the product of two lists of arbitrary length. You should
use pattern matching to define this function:

- zip [1,3,5,7] ["a","b","c","de"];
val it = [(1,"a"),(3,"b"),(5,"c"),(7,"de")]: (int * string) list

Note: This is the curried version with type ’a list -> ’b list -> (’a * ’b) list.
Be sure to define it to match this type.
When one list is longer than the other, repeatedly pair elements from the longer list with
the last element of the shorter list.

- zip [1,3,5,7] ["a","b"];
val it = [(1,"a"),(3,"b"),(5,"b"),(7,"b")]: (int * string) list

In the event that one or both lists are completely empty, return the empty list.

- zip [1,3,5,7] [];
stdIn:27.1-27.17 Warning: type vars not generalized because of

value restriction are instantiated to dummy types (X1,X2,...)
val it = [] : (int * ?.X1) list

In this last case, you will receive a warning like the one above since ML cannot determine
the type of the element of an empty list.

(b) Write the inverse function, unzip, which behaves as follows:

- unzip [(1,"a"),(3,"b"),(5,"c"),(7,"de")];
val it = ([1,3,5,7], ["a","b","c","de"]): int list * string list

(c) Write zip3, to zip three lists.

- zip3 [1,3,5,7] ["a","b","c","de"] [1,2,3,4];
val it = [(1,"a",1),(3,"b",2),(5,"c",3),(7,"de",4)]: (int * string * int) list

You must use zip in your definition of zip3.

5

(d) Why can’t you write a function zip any that takes a list of any number of lists and zips
them into tuples? From the first part of this question it should be pretty clear that for any
fixed n, one can write a function zipn. The difficulty here is to write a single function that
works for all n. In other words, can we write a single function zip any such that zip any
[list1,list2,...,listk] returns a list of k-tuples no matter what k is? Answer this
question as a comment in the code.

P3. (10 points) . Find
Write a function find with type ’a * ’a list -> int that takes a pair of an element and a
list and returns the location of the first occurrence of the element in the list. For example:

- find(3, [1, 2, 3, 4, 5]);
val it = 2 : int
- find("cow", ["cow", "dog"]);
val it = 0 : int
- find("rabbit", ["cow", "dog"]);
val it = ˜1 : int

Suggestion: first write a definition for find where the element is guaranteed to be in the list.
Then, modify your definition so that it returns ˜1 when the element is not in the list.

P4. (10 points) . Trees
Here is the datatype definition for a binary tree storing integers at the leaves:

datatype IntTree = LEAF of int | NODE of (IntTree * IntTree);

(a) Write a function sum:IntTree -> int that adds up the values in the leaves of a tree:

- sum(LEAF 3);
val it = 3 : int
- sum(NODE(LEAF 2, LEAF 3));
val it = 5 : int
- sum(NODE(LEAF 2, NODE(LEAF 1, LEAF 1)));
val it = 4 : int

(b) Write a function height: IntTree -> int that returns the height of a tree:

- height(LEAF 3);
val it = 1 : int
- height(NODE(LEAF 2, LEAF 3));
val it = 2 : int
- height(NODE(LEAF 2, NODE(LEAF 1, LEAF 1)));
val it = 3 : int

(c) Write a function balanced: IntTree -> bool that returns true if a tree is balanced (ie,
both subtrees are balanced and differ in height by at most one). You may use your height
function in the definition of balanced.

- balanced(LEAF 3);
val it = true : bool
- balanced(NODE(LEAF 2, LEAF 3));
val it = true : bool
- balanced(NODE(LEAF 2, NODE(LEAF 3, NODE(LEAF 1, LEAF 1))));
val it = false : bool

(d) What is non-optimal about using the height function in the definition of balanced? Can
you suggest a more efficient implementation? You need not write code, but describe in a
sentence or two how you would do this. Answer this question as a comment in the code.

6

P5. (8 points) . Challenge Problem
Certain programming languages (and HP calculators) evaluate expressions using a stack. We
are going to implement a simple evaluator for such a language. Computation is expressed as a
sequence of operations, which are drawn from the following data type:

datatype OpCode =
PUSH of real

| ADD
| MULT
| SUB
| DIV
| SWAP
;

The operations have the following effect on the operand stack. (The top of the stack is shown on
the left.)

OpCode Initial Stack Resulting Stack
PUSH(r) ... r ...
ADD a b ... (b + a) ...
MULT a b ... (b * a) ...
SUB a b ... (b - a) ...
DIV a b ... (b / a) ...
SWAP a b ... b a ...

The stack may be represented using a list for this example, although we could also define a stack
data type for it.

type Stack = real list;

Write a recursive evaluation function with the signature

eval : OpCode list * Stack -> real

It takes a list of operations and a stack. The function should perform each operation in order and
return what is left in the top of the stack when no operations are left. For example,

eval([PUSH(2.0),PUSH(1.0),SUB],[])

returns 1.0. The eval function will have the following basic form:

fun eval (nil,a::st) = (* ... *)
| eval (PUSH(n)::ops,st) = (* ... *)
| (* ... *)
| eval (_,_) = 0.0
;

You need to fill in the blanks and add cases for the other opcodes.
The last rule handles illegal cases by matching any operation list and stack not handled by the
cases you write. These illegal cases include ending with an empty stack, performing addition
when fewer than two elements are on the stack, and so on. You may ignore divide-by-zero errors
for now (or look at exception handling in Ullman– we will cover that topic in a few weeks).

7

