
Homework 1
Due 14 February

Handout 6
CSCI 334: Spring 2018

Notes

This homework has three types of problems:

Self Check: You are strongly encouraged to think about and work through these questions, and may
do so with a partner. Do not submit answers to them.

Problems: You will turn in answers to these questions.

Pair Programming: This part involves writing Lisp code. You are required to work with a partner for
this section. If you have a preferred partner, be sure to email me (dbarowy@cs.williams.edu) with
your partner’s name by the evening of Tuesday, Feb 6. If I have not received an email from
you by then, I will assign you a partner.

Turn-In Instructions

You must turn in your work for this assignment in two parts, one for the Problems part and one for
the Pair Programming part. You will be assigned two GitHub repositories.

Problems: Problem sets should be typed up using LATEX and submitted using the hw1-problems
repository. For example, if your GitHub username is dbarowy, then your repository will be called
hw1-problems-dbarowy. Be sure that your work is committed and pushed to your repository
by Wednesday, February 14 at 11:59pm.
If you discuss the problem set with your partner or with a study group, please be sure to include
their names in a collaborators.txt file in your repository.

Pair Programming: Programming solutions should be typed up and submitted using the hw1-progs
repository. For example, if your GitHub username is dbarowy and you are working with a part-
ner whose username is wjannen, look for a repository called hw1-progs-dbarowy-wjannen
(usernames will be in alphabetical order). Be sure that your work is committed and pushed to
your repository by Wednesday, February 14 at 11:59pm.
Lisp files should have a “.lisp” suffix. For example, the pair programming problem P1 should
appear as the file p1.lisp. Your code should be documented using comments. Comment lines
start with a “;”.

Unix Accounts

We will be working on the Unix lab computers throughout the semester. If you have not used
these machines before or don’t remember your password, please see Mary Bailey to obtain
a password and verify that you can log in. Mary has posted her hours that she will be
available to set up accounts on the door to the UNIX Lab in TCL 312.

I encourage you to work in the Unix lab whenever you like, but also keep in mind that you can ssh
to our computers from anywhere on campus. For example, if your username is bcool, you can connect
to lohani on the command line by typing: ssh bcool@lohani.cs.williams.edu
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Reading

1. (Required) Mitchell, Chapter 3. Note: be sure to check the book errata on the course webpage
for this chapter.

2. (As Needed) The Lisp Tutorial from the “Tutorials” section of the course web page, as needed,
for the programming questions.

3. (Optional) J. McCarthy, Recursive functions of symbolic expressions and their computation by
machine, Comm. ACM 3,4 (1960) 184–195. You can find a link to a PDF on the cs334 web site.
The most relevant sections are 1, 2 and 4; you can also skim the other sections if you like.

Self Check

S1. (0 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cons Cell Representations

Mitchell, Problem 3.1

S2. (0 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Using Lisp
For this problem, use the lisp interpreter clisp on the Unix machines in the computer lab.
Typing clispwill start up the Lisp read-eval-print loop (REPL). This is a good way to experiment
with code. Type (quit) to quit the REPL.
When developing a solution to a homework problem, however, I recommend putting your Lisp
code into a file and then running the interpreter on that file. This mimics the way the graders
will be running your code.
To run the program in the file “example.lisp”, type

clisp < example.lisp

at the command line. The interpreter will read, evaluate, and print the result of expressions in
the file, in order. For example, suppose “example.lisp” contains the following:

; square a number
(defun square (x) (* x x))

(square 4)
(square (square 3))

(quit)

Evaluating this file produces the following output:

SQUARE
16
81
Bye.
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Lisp evaluates the function declaration for square, evaluates the two expressions that apply
square to the given arguments, and then quits. It is important that the program ends with
(quit) so that clisp will exit and return you to the Unix shell. If your program contains an
error (or you forget the (quit) expression), clisp will print an error message and then wait
for you to type some input. Type in “(quit)” to exit the interpreter, or type “ˆD” (Control-D) to
return to the REPL.
The dialect of Lisp we use is similar to what is described in the book, with a few notable excep-
tions. See the Lisp notes page in the “Tutorials” section of the course webpage for a complete list
of the Lisp operations needed for this assignment. Try using higher-order functions (ie, mapcar
and apply) whenever possible.
The following simple examples may help you start thinking as a Lisp programmer.

(a) What is the value of the following expressions? Try to work them out yourself, and verify
your answers on the computer:

i. (car ’(inky clyde blinky pinky))

ii. (cons ’inky (cdr ’(clyde blinky pinky)))

iii. (car (car (cdr ’(inky (blinky pinky) clyde))))

iv. (cons (+ 1 2) (cdr ’(+ 1 2)))

v. (mapcar #’(lambda (x) (/ x 2)) ’(1 3 5 9))

vi. (mapcar #’(lambda (x) (car x)) ’((inky 3) (blinky 1) (clyde 33)))

vii. (mapcar #’(lambda (x) (cdr x)) ’((inky 3) (blinky 1) (clyde 33)))

(b) Write a function called list-len that returns the length of a list. Do not use the built-in
length function in your solution.

* (list-len (cons 1 (cons 2 (cons 3 (cons 4 nil)))))

4

* (list-len ’(A B (C D)))

3

(c) Write a function double that doubles every element in a list of numbers. Write this two
different ways— first use recursion over lists and then use mapcar.

* (double ’(1 2 3))
(2 4 6)

Problems

Q1. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Detecting Errors
Evaluation of a Lisp expression can either terminate normally (and return a value), terminate
abnormally with an error, or run forever. Some examples of expressions that terminate with an
error are (/ 3 0), division by 0; (car ’a), taking the car of an atom; and (+ 3 "a"), adding
a string to a number. The Lisp system detects these errors, terminates evaluation, and prints a
message to the screen. Suppose that you work at a software company that builds software using
Impure Lisp. Your boss wants to handle errors in Lisp programs without terminating the entire
computation, but doesn’t know how.

(a) You boss asks you to implement a Lisp construct (error? E) that detects whether an ex-
pression E will cause an error. More precisely, your boss wants evaluation of (error? E) to
(1) halt with value T if evaluation of E would terminate in error, and (2) halt with value nil
otherwise. Explain why it is not possible to implement the (error? E) construct.
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(b) After you finish explaining why (error? E) is impossible, your boss proposes an alterna-
tive. Instead, your boss wants you to implement a Lisp construct (guarded E) that either
executes E and returns its value, or if E halts with an error, returns 0 without performing
any side effects. This could be used to try to evaluate E, and if an error occurs, to use 0
instead. For example,

(+ (guarded E) E2)

will have the value of E2 if evaluation of E halts in error, and the value of E + E2 other-
wise. Observe that unlike (error? E), evaluation of (guarded E) does not need to halt if
evaluation of E does not halt.

i. How might you implement the guarded construct?
ii. What difficulties might you encounter?

Q2. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition of Garbage

Mitchell, Problem 3.5

Pair Programming

P1. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recursive Definitions
Not all recursive programs take the same amount of time to run. Consider, for instance, the
following function that raises a number to a power:

(defun power (base exp)
(cond ((eq exp 1) base)

(t (* base (power base (- exp 1))))))

A call to (power base e) takes e − 1 multiplication operations for any e ≥ 1. You could prove
this time bound by induction on e:

Theorem: A call to (power b e), where e ≥ 1, takes at most e− 1 multiplications.

• Base case: e = 1. (power b 1) returns b and performs zero multiplications because b1 = b.
• Inductive hypothesis: For all k < e, (power b k) takes at most k − 1 multiplications.
• Proof for e > 1: Since e is greater than 1, the “else” branch of cond is taken, which

(a) performs one multiply operation, and
(b) then recursively calls (power b (- e 1)).
By induction, we know that the recursive call performs at most (e− 1)− 1 = e− 2 multiplica-
tions. Because the result is multiplied by the base, there up to e−2+1 = e−1 multiplications.
Therefore, power performs at most e− 1 multiplications.

Multiplication operations are typically very slow relative to other math operations on a computer.
Fortunately, there are other means of exponentiation that use fewer multiplications and lead to
more efficient algorithms. Consider the following definition of exponentiation:

b1 = b
be = (b(e/2))2 if e is even
be = b ∗ (be−1) if e is odd
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(a) Write a Lisp function fastexp to calculate be for any e ≥ 1 according to these rules. You will
find it easiest to first write a helper function to square an integer, and you may wish to use
the library function (mod x y), which returns the integer remainder of x when divided by
y.

(b) Show that the program you implemented is indeed faster than the original by determining a
bound on the number of multiplication operations required to compute (fastexp base e).
Prove that bound is correct by induction (as in the example proof above), and then compare
it to the bound of e − 1 from the first algorithm. Include this proof as a comment in your
code. Multline comments are delineated with #| and |#, as in: #| . . . |#

Hint: for fastexp, it may be easiest to think about the number of multiplications required
when exponent e is 2k for some k. Determine the number of multiplies needed for exponents
of this form and then use that to reason about an upper bound for the others.
The following property of the log function may be useful in your proof:

logb(m) + logb(n) = logb(mn)

For example, 1 + log2(n) = log2(2) + log2(n) = log2(2n).

P2. (6 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recursive List Manipulation
Write a function merge-list that takes two lists and joins them together into one large list by
alternating elements from the original lists. If one list is longer, the extra part is appended onto
the end of the merged list. The following examples demonstrate how to merge the lists together:

* (merge-list ’(1 2 3) nil)
(1 2 3)

* (merge-list nil ’(1 2 3))
(1 2 3)

* (merge-list ’(1 2 3) ’(A B C))
(1 A 2 B 3 C)

* (merge-list ’(1 2) ’(A B C D))
(1 A 2 B C D)

* (merge-list ’((1 2) (3 4)) ’(A B))
((1 2) A (3 4) B)

Before writing the function, you should start by identifying the base cases (there are more than
one) and the recursive case.

P3. (6 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse
Write a function rev that takes one argument. If the argument is an atom it remains unchanged.
Otherwise, the function returns the elements of the list in reverse order:

* (rev nil)
nil

* (rev ’A)
A

* (rev ’(A (B C) D))
(D (B C) A)
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* (rev ’((A B) (C D)))
((C D) (A B))

P4. (6 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mapping Functions
Write a function censor-word that takes a word as an argument and returns either the word or
XXXX if the word is a “bad” word:

* (censor-word ’lisp)
lisp

* (censor-word ’midterm)
XXXX

The lisp expression (member word ’(extension algorithms graphics AI midterm)) eval-
uates to true if word is in the given list.
Use this function to write a censor function that replaces all the bad words in a sentence:

* (censor ’(I NEED AN EXTENSION BECAUSE I HAD A AI MIDTERM))
(I NEED AN XXXX BECAUSE I HAD A XXXX XXXX)

* (censor ’(I LIKE PROGRAMMING LANGUAGES MORE THAN GRAPHICS OR ALGORITHMS))
(I LIKE PROGRAMMING LANGUAGES MORE THAN XXXX OR XXXX)

Operations like this that must processes every element in a structure are typically written using
mapping functions in a functional language like Lisp. In some ways, mapping functions are
the functional programming equivalent of a “for loop”, and they are now found in main-stream
languages like Python, Ruby, and even Java. Use a map function in your definition of censor.

P5. (6 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Working with Structured Data
This part works with the following database of students and grades:

;; Define a variable holding the data:

* (defvar grades ’((Riley (90.0 33.3))
(Jessie (100.0 85.0 97.0))
(Quinn (70.0 100.0))))

First, write a function lookup that returns the grades for a specific student:

* (lookup ’Riley grades)

(90.0 33.3)

It should return nil if no one matches.
Now, write a function averages that returns the list of student average scores:

* (averages grades)

((RILEY 61.65) (JESSIE 94.0) (QUINN 85.0))

You may wish to write a helper function to process one student record (ie, write a function such
that (student-avg ’(Riley (90.0 33.3))) returns (RILEY 61.65), and possibly another
helper to sum up a list of numbers). As with censor in the previous part, the function averages
function is most elegently expressing via a mapping operation (rather than recursion).
We will now sort the averages using one additional Lisp primitive: sort. Before doing that, we
need a way to compare student averages. Write a method compare-students that takes two
“student/average” lists and returns true if the first has a lower average and nil otherwise:
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* (compare-students ’(RILEY 61.65) ’(JESSIE 94.0))
t

* (compare-students ’(JESSIE 94.0) ’(RILEY 61.65))
nil

To tie it all together, you should now be able to write:

(sort (averages grades) #’compare-students)

to obtain

((RILEY 61.65) (QUINN 85.0) (JESSIE 94.0))

P6. (6 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Deep Reverse
Write a function deep-rev that performs a “deep” reverse. Unlike rev, deep-rev not only
reverses the elements in a list, but also deep-reverses every list inside that list.

* (deep-rev ’A)
A

* (deep-rev nil)
NIL

* (deep-rev ’(A (B C) D))
(D (C B) A)

* (deep-rev ’(1 2 ((3 4) 5)))
((5 (4 3)) 2 1)

I have defined deep-rev on atoms as I did with rev.

P7. (8 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Challenge Problem

(a) Using Pure Lisp, implement a binary search tree, where each tree node is a list that stores
a number, a left subtree, and a right subtree. The empty subtree should be represented as
nil. Implement the following functions:

i. insert: Given a tree t, inserts a number, returning a new tree.
ii. lookup: Given a tree t and a number n, returns T if n is in the tree, otherwise nil.

(b) How many cons cells are created during insert?
(c) If you were to use features from Impure Lisp instead and a slightly different definition of

insert, do you think that you could reduce the number of cons cells created during inser-
tion? Why or why not?
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