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Garbage Collection in the Java HotSpot Virtual Machine

Gain a better understanding of how garbage collection in the Java HotSpot VM works,

and learn to take full advantage of it when designing, developing, and deploying your

Java applications.

by Tony Printezis

he Java virtual machine (JVM) specification dictates that any JVM implementation must include a garbage

collector (GC) to reclaim unused memory (i.e., unreachable objects) 
[JVMS2 1999]

. However, the behavior and

efficiency of a garbage collector can heavily influence the performance and responsiveness of any application that

relies on it. This article gives an introduction to the garbage collection techniques that Sun Microsystems Inc.

adopted in the Java HotSpot Virtual Machine, its production Java virtual machine. The aim is for the reader to gain

a better understanding of how garbage collection in the Java HotSpot VM works and, as a result, be able to take

full advantage of it when designing, developing, and deploying their applications.

"Heap storage for objects is reclaimed by an automatic

storage management system (typically a garbage collector);

objects are never explicitly deallocated."

— Java Virtual Machine Specification, Section 3.5.3 
[JVMS2

1999]

Generational Garbage Collection

The Java HotSpot VM uses a generational garbage collector, a well-known technique that exploits the following

two observations:

Most allocated objects will die young.

Few references from older to younger objects exist.



 

Figure 1. Generational Garbage

Collection

 

Figure 2. Use of a Card Table

These two observations are collectively known as the weak generational

hypothesis, which generally holds true for Java applications. To take

advantage of this hypothesis, the Java HotSpot VM splits the heap into two

physical areas, which are referred to as generations, one young and the

other old:

Young Generation. Most newly allocated objects are allocated in the

young generation (see Figure 1), which is typically small and

collected frequently. Since most objects in it are expected to die

quickly, the number of objects that survive a young generation

collection (also referred to as a minor collection) is expected to be

low. In general, minor collections are very efficient because they

concentrate on a space that is usually small and is likely to contain a

lot of garbage objects.

Old Generation. Objects that are longer-lived are eventually

promoted, or tenured, to the old generation (see Figure 1). This

generation is typically larger than the young generation and its

occupancy grows more slowly. As a result, old generation collections (also referred to as major collections)

are infrequent, but when they do occur they are quite lengthy.

To keep minor collections short, the GC must be able to identify live objects in the young generation without

having to scan the entire (and potentially larger) old generation. It can achieve this in several ways. In the Java

HotSpot VM, the GC uses a data structure called a card table. The old generation is split into 512-byte chunks

called cards. The card table is an array with one byte entry per card in the heap. Every update to a reference field

of an object also ensures that the card containing the updated reference field is marked dirty by setting its entry in

the card table to the appropriate value. During a minor collection, only the areas that correspond to dirty cards are

scanned to potentially discover old-to-young references (see Figure 2).

In cooperation with the bytecode interpreter and the just-in-time (JIT)

compiler, the Java HotSpot VM uses a write barrier to maintain the card

table. This barrier is a small fragment of code that sets an entry of the card

table to the dirty value. The interpreter executes a write barrier every time it

executes a bytecode that updates a reference field. Additionally, the JIT

compiler emits the write barrier after emitting the code that updates a

reference field. Although write barriers do impact performance on the

execution a bit, their presence allows for much faster minor collections,

which typically improves the end-to-end throughput of an application.

A big advantage of generational garbage collection is that each generation

can be managed by the garbage collection algorithm that is most

appropriate for its characteristics. A fast GC usually manages the young

generation, as minor collections are very frequent. This GC might be a little

space wasteful, but since the young generation typically is a small portion of

the heap, this is not a big problem. On the other hand, a GC that is space

efficient usually manages the old generation, as the old generation takes up most of the heap. This GC might not

be quite as fast, but because major collections are infrequent, it doesn't have a big performance impact.

To take full advantage of generational garbage collection, applications should conform to the weak generational

hypothesis, as it is what generational garbage collection exploits. For the Java applications that do not do so, a

generational garbage collector unfortunately might add more overhead. In practice, such applications are not very

common.



 

Figure 3. Young Generation Layout

 

Figure 4. During a Minor Collection

The Young Generation

Figure 3 illustrates the layout of the young generation of the Java HotSpot VM (the spaces are not drawn to

proportion). It is split into three separate areas:

The Eden. This is where most new objects are allocated (not all, as large

objects may be allocated directly into the old generation). The Eden is

always empty after a minor collection.

The Two Survivor Spaces. These hold objects that have survived at least

one minor collection but have been given another chance to die before

being promoted to the old generation. As illustrated in Figure 3, only one of

them holds objects, while the other is unused.

Figure 4 illustrates the operation of a minor collection (objects that have

been found to be garbage are marked with a gray X). Live objects in the

Eden that survive the collection are copied to the unused survivor space.

Live objects in the survivor space that is in use, which will be given another

chance to die in the young generation, are also copied to the unused

survivor space. Finally, live objects in the survivor space that is in use, which

are deemed "old enough," are promoted to the old generation.

At the end of the minor collection, the two survivor spaces swap roles (see

Figure 5). The Eden is entirely empty; only one survivor space is in use; and

the occupancy of the old generation has grown slightly. Because live objects

are copied during its operation, this type of collector is called a copying

collector.

Fast Allocation

The operation of the allocator is tightly coupled with the operation of the

garbage collector. The collector has to record where in the heap the free

space it reclaims is located. In turn, the allocator needs to discover where

the free space in the heap is before it can re-use it to satisfy allocation

requests. The copying collector that collects the young generation of the

Java HotSpot VM has the advantage of always leaving the Eden empty,

which allows allocations into the Eden to be very efficient by using the

bump-the-pointer technique. According to this technique, the end of the last

allocated object being tracked (usually called top) and when a new

allocation request needs to be satisfied, the allocator needs only to check whether it will fit between top and the

end of the Eden. If it does, top is bumped to the end of the newly allocated object.



 

Figure 5. After a Minor Collection

 

Figure 6. The Serial Collector

However, most interesting Java applications are multi-threaded and their

allocation operations need to be multi-threaded safe. If they simply used

global locks to ensure this, then allocation into Eden would become a

bottleneck and degrade performance. Instead, the Java HotSpot VM has

adopted a technique called Thread-Local Allocation Buffers (TLABs), which

improves multi-threaded allocation throughput by giving each thread its own

buffer (i.e., a small chunk of the Eden) from which to allocate. Since only

one thread can be allocating into each TLAB, allocation can take place

quickly with the bump-the-pointer technique (and without any locking). When

a thread fills up its TLAB and needs to get a new one (an infrequent

operation), however, it needs to do so in a multi-threaded safe way. In the

Java HotSpot VM, the new Object() operation is, most of the time, around 10

native instructions. It is the operation of the garbage collector, which empties

the Eden, that enables this fast allocation scheme.

Garbage Collectors: Spoiled for Choice

"The Java Virtual Machine assumes no particular type of automatic storage management

system, and the storage management technique may be chosen according to the

implementor's system requirements."

—- Java Virtual Machine Specification, Section 3.5.3 
[JVMS2 1999]

In fact, the Java HotSpot VM has three different garbage collectors, each of which is targeted to a different set of

applications. The next three sections describe them.

The Serial Collector

The configuration of the Serial Collector is a young generation over an old

generation managed by a sliding compacting mark-sweep, also known as a

mark-compact, collector. Both minor and major collections take place in a

stop-the-world fashion (i.e., the application is stopped while a collection is

taking place). Only after the collection has finished is the application

restarted (see Figure 6).

The mark-compact collector first identifies which objects are still live in the

old generation. It then slides them towards the beginning of the heap,

leaving any free space in a single contiguous chunk at the end of the heap.

This allows any future allocations into the old generation, which will most

likely take place as objects are being promoted from the young generation,

to use the fast bump-the-pointer technique. Figure 7 illustrates the operation

of such a collector (in sub-figure a, objects marked with a gray X are

assumed to be garbage, and the shaded area in sub-figure b denotes free

space).

The Serial Collector is the collector of choice for most applications that do not have low pause time requirements

and run on client-style machines. It takes advantage of only a single CPU for garbage collection work (hence, its

name). Still, on today's hardware, the Serial Collector can efficiently manage a lot of non-trivial applications with a

few 100MBs of heap, with relatively short worst-case pauses (around a couple of seconds for major collections).



 

Figure 7. Compaction of the Old

Generation

 

Figure 8. The Parallel Collector:

Throughput Matters!

The Parallel Collector: Throughput Matters!

These days, a lot of important Java applications run on (sometimes

dedicated) servers with a lot of physical memory and multiple CPUs. Ideally,

the garbage collector can take advantage of all available CPUs and not

leave most of them idle while only one does garbage collection work.

To decrease garbage collection overhead and hence increase application

throughput, on server-style machines, the Java HotSpot VM includes the

Parallel Collector, also called the Throughput Collector. Its operation is

similar to that of the Serial Collector (i.e., it is a stop-the-world collector with

the young generation over a mark-compact old generation). However, the

minor collections take place in parallel, using all available CPUs (see Figure

8). The major collections are performed serially, but there are plans to

"parallelize" them in the near future.

Applications that can benefit from the Parallel Collector are those that do not

have pause time constraints (as infrequent—but potentially long—major

collections will still occur), that run on machines with more than one CPU, and that don't have a need for

end-to-end throughput. Examples of such applications include batch processing, scientific computing, etc. The

Parallel Collector, compared to the Serial Collector, will improve minor collection efficiency and as a result will

improve application throughput. Whereas the major collection times will remain largely unchanged (as, in both

cases, they are done serially and with the same algorithm).

The Mostly-Concurrent Collector: Latency Matters!

For a number of applications, end-to-end throughput is not as important as

fast response time. In the stop-the-world model, when a collection is taking

place, the application itself is not running and external requests will not be

satisfied until the application is restarted. Minor collections do not typically

cause very long pauses. However, major collections, even though

infrequent, can impose very long pauses, especially when large heaps are

involved.

To deal with this, the Java HotSpot VM includes the Mostly-Concurrent

Collector, also known as the Concurrent Mark-Sweep (CMS) or the Low

Latency Collector. It manages its young generation the same way the

Parallel and Serial Collectors do. Its old generation, however, is managed by

an algorithm that performs most of its work concurrently, imposing only two

short pauses per collection cycle.

Figure 9 illustrates how a collection cycle works in the Mostly-Concurrent

Collector. It starts with a short pause, called initial mark, that identifies the set of objects that are immediately

reachable from outside the heap. Then, during the concurrent marking phase, it marks all live objects that are

transitively reachable from this set. Because the application is running and updating reference fields (hence,

modifying the object graph) while the marking phase is taking place, not all live objects are guaranteed to be

marked at the end of the concurrent marking phase. To deal with this, the application stops again for a second

pause, called remark, which finalizes marking by revisiting any objects that were modified during the concurrent

marking phase. The card table data structure is re-used to also keep track of modified objects. Because the

remark pause is more substantial than the initial mark, it is "parallelized" to increase its efficiency. At the end of

the remark phase, all live objects in the heap are guaranteed to have been marked. Since revisiting objects during

the remark phase increases the amount of work the collector has to do, its overhead increases as well. This is a

typical trade-off for most collectors that attempt to reduce pause times.



 

Figure 9. The Mostly-Concurrent

Collector: Latency Matters!

 

Figure 10. Sweeping of the Old

Generation

Having identified all live objects in the old generation, the final phase of the

collection cycle is the concurrent sweeping phase, which sweeps over the

heap, de-allocating garbage objects in-place without relocating the live ones.

Figure 10 illustrates the operation of the sweeping phase: in sub-figure a,

objects marked with a gray X are assumed to be garbage, and the shaded

areas in sub-figure b denote free space. In sub-figure b, free space is not

contiguous (unlike in the previous two collectors, as illustrated in Figure 7),

and the collector needs to employ a data structure (free lists, in this case)

that records which parts of the heap contain free space. As a result,

allocation into the old generation is more expensive, as allocation from free

lists is not as efficient as the bump-the-pointer technique. This imposes extra

overhead to minor collections, as most allocations in the old generation take

place when objects are promoted during minor collections.

Another disadvantage that the Mostly-Concurrent Collector has, which the

previous two don't, is that it typically has larger heap requirements. A few

reasons explain why. First, a concurrent marking cycle will last much longer

than that of a stop-the-world collector. And it is only during the sweeping phase that space is actually reclaimed.

Given that the application is allowed to run during the marking phase, it is also allowed to allocate memory, hence

the occupancy of the old generation potentially will grow during the marking phase and drop only during the

sweeping phase. Additionally, despite the collector's guarantee to identify all live objects during the marking

phase, it doesn't actually guarantee that it will identify all objects that are garbage. Some objects that will become

garbage during the marking phase may or may not be reclaimed during the cycle. If they are not, then they will be

reclaimed during the next cycle. Garbage objects that are wrongly identified as live are usually referred to as

floating garbage.

Finally, fragmentation issues due to the lack of compaction might also

prevent the collector from using the available space as efficiently as

possible. If the old generation is full before the collection cycle in progress

has actually reclaimed sufficient space, the Mostly-Concurrent Collector will

revert to an expensive stop-the-world compacting phase, similar to that of

the Parallel and Serial Collectors.

Compared to the Parallel Collector, the Mostly-Concurrent Collector

decreases old-generation pauses—sometimes dramatically—at the expense

of slightly longer young generation pauses, some reduction in throughput,

and extra heap size requirements. Due to its concurrency, it also takes CPU

cycles away from the application during a collection cycle. Applications that

can benefit from it are ones that require fast response times (such as

data-tracking servers, Web servers, etc.), and it is in fact widely used in this

context.

Further Reading for the Interested Reader

This article presented a brief introduction to how garbage collection works in the Java HotSpot VM. It introduced

the notion of generational garbage collection, described the way the young generation works in the Java HotSpot

VM, gave an overview of the three different garbage collectors that are available, and indicated for which situation

each of them is appropriate.

Find more resources related to this topic at the following Web sites:



Tuning Garbage Collection with the 1.4.2 Java[tm] Virtual Machine (Sun documentation)

Garbage Collector Ergonomics (Sun documentation)

Java Platform, Standard Edition, v 1.4.2 API Specification (Sun documentation).

Generational and Concurrent Garbage Collection (IBM developerWorks)

For an informative introduction to garbage collection, R. E. Jones' Garbage Collection: Algorithms for Automatic

Dynamic Memory Management covers all the techniques mentioned in this article.
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