Computer Science 432: Operating Systems (Revised)

Duane A. Bailey

Office:	Physics 306.
email:	bailey@williams.edu
Calendar:	https://tinyurl.com/cs432-calendar
Texts:	xv6: a simple, Unix-like teaching operating system, an e-text by Cox, Kaashoek, and Morris.
	RISC-V: An Overview of the Instruction Set Architecture, an e-text by Porter.
	The C Programming Language, 2nd edition, by Kernighan and Ritchie.
Website:	www.cs.williams.edu/~cs432
Lecture:	Wachenheim 114, Monday and Wednesday, 8:30-9:45a.m.
Lab:	Ward Lab (TBL 301), Monday (1:10-2:25 or 2:35-3:50)
Small Groups:	Knuth Lab (TCL 312b), Wednesday or Thursday.
Office Hours:	Tuesdays, 1-3pm, Fridays 9-10:30am, or by appointment.
Lab Code:	3-9-2-7-8-1
Zoom Links:	See calendar.

This course explores the design and implementation of computer operating systems. An operating system (O/S) is simply a (collection of) programs that manage the real or imagined resources available for use in a computer. Since our understanding of what a computer is changes constantly (your thermostat? your car? your house?) it is not surprising that our view of what constitutes an operating system evolves as well. Nonetheless, there are basic aspects of operating system design that have evolved over, say, the last six decades that are worth studying: kernel design, process scheduling, concurrency and synchronization, virtualization, memory management, I/O and file system integration, system security, and support for distributed computation. In this course, we will primarily investigate classic and modern approaches to design of unix-style operating systems.

This course will be based (roughly) on the text xv6: a simple, Unix-like teach operating systems by Cox, Kaashoek, and Morris. This text describes, in detail, the xv6 operating system, developed by the authors and recently ported to the RISC-V open-source architecture from Berkeley. The approach of these efforts is not to expose students to a mature operating system, but to investigate the design and implementation choices that are typical. The labs in this course are motivated by the labs in their MIT course, 6.S081.

Due to the playful nature of our explorations, this course requires a good understanding of the C programming language. Over time, I expect this to develop into mastery. Kernighan and Ritchie's classic text, *The C Programming Language*, 2nd edition, is an ideal reference. Because the code we write in C translates into the instructions that are native to the hardware, we will also become intimately familiar with the RISC-V architecture. Toward that end, I recommend Harry Porter's *RISC-V: An Overview of the Instruction Set Architecture*.

Below is a schedule of topics we will investigate. It follows, to some extent, the outline of the MIT text, but we will occasionally consider other technical papers discussing issues relating to operating systems design.

Week of	Monday	Wednesday	Friday	Lab	
February 4	—		Intro.	С	
February 7	C	O/S Interface (Ch. 1)		Pointers	
February 14	Xv6	System Calls (Ch. 2)		Xv6	
February 21	Memory (Ch. 3)	Page Tables		System Calls	
February 28	Traps (Ch. 4)	Page Faults		Memory Management	
March 7	Interrupts (Ch. 5)	Timers		Copy-on Write	
March 14	Locking (Ch. 6)	Locking		(COW, continued)	
	Spring Break				
April 4	Locking (Ch. 6)	Locking			
April 11	Scheduling (Ch. 7)	Scheduling		Multithreading	
April 18	Scheduling	Files (Ch. 8)		(Multithreading, continued)	
April 29	Files	Files		File Systems	
May 2	TBA	TBA	OSCO I	(File Systems, continued)	
May 9	OSCO II	OSCO III	OSCO IV		

Tentative Schedule of Topics	Tentative	Schedule	of	Topics
------------------------------	-----------	----------	----	--------

Each week we will meet on Monday and Wednesday for lecture, and Monday afternoon for labs. There will also be a 1-hour "small group" meeting to discuss lab efforts. Assignments will be handed out, generally, on Mondays and due a week later. We will review submitted code in small group meetings.

Small Group	Time (Knuth Lab)	Members
А	Wed. 11-noon	Diego, Petros, Tai, Ye
В	Wed. 1:10-2:10	De La, Owen, Roxanne, Whit
С	Wed. 2:35-3:35	Alex, Derek, Emily, Paul
D	Thurs. 10:00-11:00	Aidan, Jihong, Mel, Rachel
Е	Thurs. 1:10-2:10	Clara, Enoch, Nick, Sophie
F	Thurs. 2:35-3:35	Atlas, Dylan, Emma, Garett

Small Group/Code Review Meetings (Knuth Lab)

The last four class meetings (including the last two Fridays) will be dedicated to the O/S Conference (OSCON), where each of you will give a 10 minute technical presentation on an OS-related topic.

O/S Conference 2022				
OSCO I	Friday, May 6	Whit, Diego, Dylan, Rachel, Clara, Garett		
OSCO II	Monday, May 9	Owen, Alex, Enoch, Aidan, Derek		
OSCO III	Wednesday, May 11	Petros, Atlas, Sophie, Mel, Jihong, Emily, Ye		
OSCO IV	Friday, May 13	Paul, De La, Nick, Tai, Roxanne, Emma		

We will be seeing a fair amount of technical material. A feature of a 400-level computer science course is that you will be expected to pick up the working details of the course on your own. Most of the work is to be completed by individuals. The Honor Code applies in a rather direct way: I expect that all your work be your own. Please feel free to discuss the technical material with your colleagues, but not matters of execution. I will be available, as always, to help with any concern.

*