

How to turn on your computer*

* x86 computer **

** old x86 computer

Step one: invent the wheel
● Changing magnetic flux through a loop

induces a current in the loop
● V α dɸ/dt
● Basically how every form of energy

production (coal, nuclear, wind, geothermal)
is converted into electricity

(solar is an exception to this)

Step two: rectify AC to DC
● AC bad for computer! Computer hate AC. AC probably make CPU go boom.
● DC good for computer. DC smooth like pebble. Computer love DC.
● Filters, stepdown transformers, grounding are also important

Step three: plug it in!
● Some protective circuitry on motherboard, lots of chips that do onboard logic

– Regulating voltage, generating data / clock signals, monitoring power
– Distinction between power lines and data lines

● POST (power-on self test)
– Ensuring that onboard hardware is all working properly
– Example, many computers will beep if no RAM sticks are found
– (Therefore they fail to POST)

Overview of the rest of the process

What happens before bootloader?
● BIOS searches for bootable drives

– USB’s, hard disks, etc.
● Search order can be modified by booting into BIOS config and changing

parameters
● BIOS looks for a drive starting with a 512 byte sector ending with the magic

number 0xaa55

MBR (Master Boot Record)
● First physical sector on bootable storage device
● Contains code + data required to find and boot the operating system
● x86 machines start in 16 bit Real Mode (for compatibility), operating systems normally run in

32 or 64 bit Protected Mode
● In 446 bytes (A single 512 byte sector – 2 byte magic number – partition table with 4 16-byte

entries), the bootloader must*
– find a bootable partition
– find kernel image and load it into memory
– switch to protected 32 bit mode (64 bit is a bit more complicated (32 of them, actually))
– (optionally) set up stack for operating system

* this is partially a lie, as we shall see

Fun details
● No distinction between code and data in bootloader code
● 16-bit limitations mean that segmentation addressing must frequently be

used
– segment:offset → (segment * 16) + offset
– Commonly, a code segment and a data segment

● Programmer must be very aware of relative addressing

How its actually done
● Because of the 446-byte limitation, actual bootloaders do not usually

complete the entire boot process in the boot sector.
● Other approaches are:

– Use the second+ sectors for more bootloader code, and to load those
into memory using first sector code

– Relocate initial bootloader code, and load a secondary bootloader to
0x7c0:0x0 (good for multibooting)

How its actually done
● Because of the 446-byte limitation, actual bootloaders do not usually

complete the entire boot process in the boot sector.
● Other approaches are:

– Use the second+ sectors for more bootloader code, and to load those
into memory using first sector code

– Relocate initial bootloader code, and load a secondary bootloader to
0x7c0:0x0 (good for multibooting)

– Give up and blow up your computer (recommended)

Credits
● http://www.invoke-ir.com/2015/05/ontheforensictrail-part2.html

● https://wiki.osdev.org/Boot_Sequence

● https://www.teachoo.com/10705/3113/Electric-Generator/category/Concepts/

http://www.invoke-ir.com/2015/05/ontheforensictrail-part2.html
https://wiki.osdev.org/Boot_Sequence
https://www.teachoo.com/10705/3113/Electric-Generator/category/Concepts/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

