
Fire OS
Amazon’s operating system for Kindle Fire

Kindle Fire History and Overview

● Kindle fire is Amazon’s version of the iPad

● It provides access to movies, books, music, social media,

and work-related content.

● 2004: Amazon started selling e-books

● 2009: Apple launched the iPad, which contained access

to iTunes and iBooks stores

● 2011: Jeff Bezos disclosed the “Otter project” and

announced the launch of Kindle Fire

#
#
#
#

Kindle Fire Overview

Hardware

● 7” multi-touch display with a 1024 x 600
pixel resolution capable of displaying 16
million colors at 169 pixels per inch

● 8GB of internal storage
● 2GB of this memory is reserved for the OS
● Texas Instruments OMAP 4430, a 1GHz

dual-core processor

Software

● Fire OS
● OS is based on Google’s Android 2.3

(Gingerbread) mobile operating system
● Highly customized to match low price

sales ($199) and reduced storage
● Customized in this case mostly means

simplified

#
#
#
#

Diving into Fire OS Architecture

Applications
manager

Kernel

User
applications

Libraries and
runtime

environment

#
#
#
#

Kernel

● Based on Linux version 2.6
● Multitasking execution environment - dual core
● Android applications do not run as processes directly on the Linux kernel, instead they

run on within its own instance of the Dalvik VM
● Why? Applications are essentially sandboxed and cannot interfere with the OS
● Also enforces level of abstraction so that applications aren’t tied to specific hardware
● Fun fact: the Dalvik executable (.dex) format has a 50% smaller memory footprint than

standard Java bytecode

#
#
#
#

Resource Management

● Each running Android application is
viewed by the OS as a separate process

● If resources on the device are reaching
capacity, it will terminate processes to
free up memory

● Importance hierarchy: considers both the
priority and state of all running
processes

● Processes are terminated from the
lowest priority and working up the
hierarchy until sufficient resources have
been liberated

Process states

#
#
#
#

Activity Stack

● For each application that is running, the runtime
system maintains an Activity Stack

● When an application is launched, the first of the
application’s activities to be started is placed onto
the top of the stack

● When the active activity exits, it is popped off the
stack and the activity located beneath it becomes
the current active activity

● 4 activity states: Running, Paused, Stopped,
Killed

#
#
#
#

thread_create()

#
#
#
#

yield_thread()

#
#
#
#

Potentially Interesting Stuff

#
#
#
#

Thank you!
Questions?

Some quality comments from the smart programmers at Amazon:

#
#
#
#

