3

Fire OS @

Amazon’s operating system for Kindle Fire

Kindle Fire History and Overview

e Kindle fire is Amazon’s version of the iPad
e |t provides access to movies, books, music, social media,

and work-related content.

e 2004: Amazon started selling e-books

e 2009: Apple launched the iPad, which contained access
to iTunes and iBooks stores

e 2011: Jeff Bezos disclosed the “Otter project” and

announced the launch of Kindle Fire

#
#
#
#

Hardware

7" multi-touch display with a 1024 x 600
pixel resolution capable of displaying 16
million colors at 169 pixels per inch

8GB of internal storage

2GB of this memory is reserved for the OS
Texas Instruments OMAP 4430, a 1GHz
dual-core processor

Kindle Fire Overview

Software

Fire OS

OS is based on Google’s Android 2.3
(Gingerbread) mobile operating system
Highly customized to match low price
sales ($199) and reduced storage
Customized in this case mostly means
simplified

#
#
#
#

Diving into Fire OS Architecture

User
T applications

Application Framework
Manager Manager Manager System
_>
manager Package Resource Content
Manager Manager Providers
Libraries

Android Runtime . .
A\ ‘ ore
Libraries

7 FreeType i SIMInCe Media h runtlme
g mramevork Dalvik Virtual environment
. Machine
SSL SGL libc

Linux Kernel

Display iFi Audio Binder (IPC)

Kerne| = Driver Driver Drivers ers
Power Process M mory '
Management Management Management

#
#
#
#

Kernel

e Based on Linux version 2.6

e Multitasking execution environment - dual core

e Android applications do not run as processes directly on the Linux kernel, instead they
run on within its own instance of the Dalvik VM
Why? Applications are essentially sandboxed and cannot interfere with the OS
Also enforces level of abstraction so that applications aren’t tied to specific hardware

e Fun fact: the Dalvik executable (.dex) format has a 50% smaller memory footprint than
standard Java bytecode

Display WiFi Audio Binder (IPC)
| Driver Driver Drivers | Drivers

Power Process Memory
Management Management Management

#
#
#
#

Resource Management

Process states

Each running Android application is

Highest Priority
viewed by the OS as a separate process
If resources on the device are reaching
capacity, it will terminate processes to

free up memory
Importance hierarchy: considers both the ;

. . Service Process
priority and state of all running
processes

Processes are terminated from the

lowest priority and working up the

hierarchy until sufficient resources have) o
been liberated Lowest Priority

#
#
#
#

Activity Stack

For each application that is running, the runtime
system maintains an Activity Stack

When an application is launched, the first of the
application’s activities to be started is placed onto
the top of the stack

When the active activity exits, it is popped off the
stack and the activity located beneath it becomes
the current active activity

4 activity states: Running, Paused, Stopped,
Killed

Starting Activity

Active Activity

Previous Active
Activity

Activity

Oldest Activity

#
#
#
#

thread _create()

struct task_struct xkthread_create(int (xthreadfn)(void *data),

static int kthread(void *_create)

/* Copy data: it's on kthread's stack */
struct kthread_create_info *create = _create;
int (*threadfn)(void xdata) = create->threadfn;
void xdata = create—>data;

struct kthread self;

int ret;

self.should_stop = 0;
init_completion(&self.exited);
current->vfork_done = &self.exited;

/* 0K, tell user we're spawned, wait for stop or wakeup */
__set_current_state(TASK_UNINTERRUPTIBLE) ;

create->result = current;

complete(&create->done) ;

schedule();

ret = —-EINTR;
if (!self.should_stop)
ret = threadfn(data);

/* we can't just return, we must preserve "self" on stack x/
do_exit(ret);

void
create(void (*func)())

//1ook through all threads
for(int i = 0; i < NTHREAD; i++){
//found free thread
if(thread[i].state == FREE){
thread[i]l.ra = (uint64) (func);
thread[i].sp = (uint64) (thread[i].stack + TSSIZE);
thread[i].state = RUNNABLE;
break;

b

void *data,
const char namefmt[],
)

struct kthread_create_info create;

create.threadfn = threadfn;
create.data = data;
init_completion(&create.done);

spin_lock(&kthread_create_lock);
list_add_tail(&create.list, &kthread_create_list);
spin_unlock(&kthread_create_lock);

wake_up_process (kthreadd_task) ;
wait_for_completion(&create.done);

if (!IS_ERR(create.result)) {
struct sched_param param = { .sched_priority = 0 };
va_list args;

va_start(args, namefmt);

vsnprintf(create.result->comm, sizeof(create.result->comm),

namefmt, args);
va_end(args);
VES

% root may have changed our (kthreadd's) priority or CPU mask.

* The kernel thread should not inherit these properties.
*/

sched_setscheduler_nocheck(create.result, SCHED_NORMAL, ¶m);

set_cpus_allowed_ptr(create.result, cpu_all_mask);
}

return create.result;

#
#
#
#

/%%

* sys_sched_yield - yield the current processor to other threads.

*

* This function yields the current CPU to other tasks. If there are no
* other threads running on this CPU then this function will return.

*/

SYSCALL_DEFINE@(sched_yield)

{ .
struct rq xrq = this_rq_lock(); yleld_th read ()

schedstat_inc(rq, yld_count);
current->sched_class->yield_task(rq);

/%

% Since we are going to call schedule() anyway, there's

* no need to preempt or enable interrupts:

*/
__release(rg->lock); void
spin_release(&rq—>lock.dep_map, 1, _THIS_IP_); (void)
do_raw_spin_unlock(&rgq->lock); S
preempt_enable_no_resched(); {

if(current->state != MONITOR) {

hedule();
schedule current->state = RUNNABLE;

return 0; }

: schedule() ;

#
#
#
#

Potentially Interesting Stuff

/*

* Schedules idle task to be the next runnable task on current CPU.
* It does so by boosting its priority to highest possible.

* Used by CPU offline code.

*/

void sched_idle_next(void)

{

int this_cpu = smp_processor_id();
struct rq *xrq = cpu_rq(this_cpu);
struct task_struct xp = rg—>idle;
unsigned long flags;

/* cpu has to be offline */
/* Run through task list and migrate tasks from the dead cpu. */ BUG_ON(cpu_online(this_cpu));
static void migrate_live_tasks(int src_cpu)

/%
struct task_struct *p, xt; * Strictly not necessary since rest of the CPUs are stopped by now
* and interrupts disabled on the current cpu.
read_lock(&tasklist_lock); */

raw_spin_lock_irqgsave(&rq—>lock, flags);

do_each_thread(t, p) {
if (p == current)
continue;

_ setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);

activate_task(rq, p, 0); V\

if (task_cpulp] == src_cpu) raw_spin_unlock_irqrestore(&rg->lock, flags);

move_task_off_dead_cpu(src_cpu, p); }
} while_each_thread(t, p);

read_unlock(&tasklist_lock);

#
#
#
#

VES

| * If it changed from the expected state, bail out now.
Thank you! “
if (unlikely(!ncsw))
Questions? break;

Some quality comments from the smart programmers at Amazon:

/%

* Ahh, all good. It wasn't running, and it wasn't
* runnable, which means that it will never become
* running in the future either. We're all done!
*/

break;

/*
* Was it really running after all now that we
* checked with the proper locks actually held?
%
* Oops. Go back and try again..
*/
if (unlikely(running)) {
cpu_relax();
continue;

#
#
#
#

