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Main Problems

• Faster access latency on newer generations of SSDs
• The traditional FS design hinders performance gain
• Kernel trap overhead is a dominant cost
• FSP builds a direct-access FS as a user process
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Advantages of FSP Architecture

• Developer velocity
• Ensure integrity, concurrency, consistency as trusted computing
• Easier cluster management
• FSP delivers high performance
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Challenges of FSP

• Efficient Communication – IPC, multi-cores
• Frontend Thread Model – management, locks, request collection 
• Process to IO Connection – TCB, secure comm, clean-up, forks 
• Handling Requests – interrupts, polling, buffers, scheduling
• Legacy Design – modern devices, multi-layer arch, limiting defects
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DashFS Prototype Results

• Faster write, read, direct access
• Sub-microsecond latency on IPC
• Comm channel scales well with number of threads
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Cheers!
Atlas Kaan Yilmaz


