
File Systems as Processes (FSP)
ATLAS KAAN YILMAZ



Main Problems

Atlas Kaan Yilmaz File Systems as Processes 1/6CSCI 432



Main Problems

• Faster access latency on newer generations of SSDs

Atlas Kaan Yilmaz File Systems as Processes 1/6CSCI 432



Main Problems

• Faster access latency on newer generations of SSDs
• The traditional FS design hinders performance gain

Atlas Kaan Yilmaz File Systems as Processes 1/6CSCI 432



Main Problems

• Faster access latency on newer generations of SSDs
• The traditional FS design hinders performance gain
• Kernel trap overhead is a dominant cost

Atlas Kaan Yilmaz File Systems as Processes 1/6CSCI 432



Main Problems

• Faster access latency on newer generations of SSDs
• The traditional FS design hinders performance gain
• Kernel trap overhead is a dominant cost
• FSP builds a direct-access FS as a user process

Atlas Kaan Yilmaz File Systems as Processes 1/6CSCI 432



Advantages of FSP Architecture

Atlas Kaan Yilmaz File Systems as Processes 2/6CSCI 432



Advantages of FSP Architecture

• Developer velocity

Atlas Kaan Yilmaz File Systems as Processes 2/6CSCI 432



Advantages of FSP Architecture

• Developer velocity
• Ensure integrity, concurrency, consistency as trusted computing

Atlas Kaan Yilmaz File Systems as Processes 2/6CSCI 432



Advantages of FSP Architecture

• Developer velocity
• Ensure integrity, concurrency, consistency as trusted computing
• Easier cluster management

Atlas Kaan Yilmaz File Systems as Processes 2/6CSCI 432



Advantages of FSP Architecture

• Developer velocity
• Ensure integrity, concurrency, consistency as trusted computing
• Easier cluster management
• FSP delivers high performance

Atlas Kaan Yilmaz File Systems as Processes 2/6CSCI 432



FSP Architecture

Atlas Kaan Yilmaz File Systems as Processes 3/6CSCI 432



In-Kernel VS FSP

Atlas Kaan Yilmaz File Systems as Processes 4/6CSCI 432



Challenges of FSP

Atlas Kaan Yilmaz File Systems as Processes 5/6CSCI 432



Challenges of FSP

• Efficient Communication – IPC, multi-cores

Atlas Kaan Yilmaz File Systems as Processes 5/6CSCI 432



Challenges of FSP

• Efficient Communication – IPC, multi-cores
• Frontend Thread Model – management, locks, request collection 

Atlas Kaan Yilmaz File Systems as Processes 5/6CSCI 432



Challenges of FSP

• Efficient Communication – IPC, multi-cores
• Frontend Thread Model – management, locks, request collection 
• Process to IO Connection – TCB, secure comm, clean-up, forks 

Atlas Kaan Yilmaz File Systems as Processes 5/6CSCI 432



Challenges of FSP

• Efficient Communication – IPC, multi-cores
• Frontend Thread Model – management, locks, request collection 
• Process to IO Connection – TCB, secure comm, clean-up, forks 
• Handling Requests – interrupts, polling, buffers, scheduling

Atlas Kaan Yilmaz File Systems as Processes 5/6CSCI 432



Challenges of FSP

• Efficient Communication – IPC, multi-cores
• Frontend Thread Model – management, locks, request collection 
• Process to IO Connection – TCB, secure comm, clean-up, forks 
• Handling Requests – interrupts, polling, buffers, scheduling
• Legacy Design – modern devices, multi-layer arch, limiting defects

Atlas Kaan Yilmaz File Systems as Processes 5/6CSCI 432



DashFS Prototype Results

Atlas Kaan Yilmaz File Systems as Processes 6/6CSCI 432



DashFS Prototype Results

• Faster write, read, direct access

Atlas Kaan Yilmaz File Systems as Processes 6/6CSCI 432



DashFS Prototype Results

• Faster write, read, direct access
• Sub-microsecond latency on IPC

Atlas Kaan Yilmaz File Systems as Processes 6/6CSCI 432



DashFS Prototype Results

• Faster write, read, direct access
• Sub-microsecond latency on IPC
• Comm channel scales well with number of threads

Atlas Kaan Yilmaz File Systems as Processes 6/6CSCI 432



Cheers!
Atlas Kaan Yilmaz


