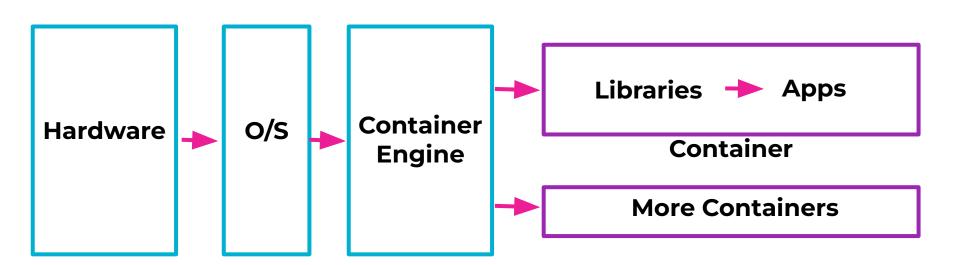

VMs vs Containers

Garett

What does it take to run a program?

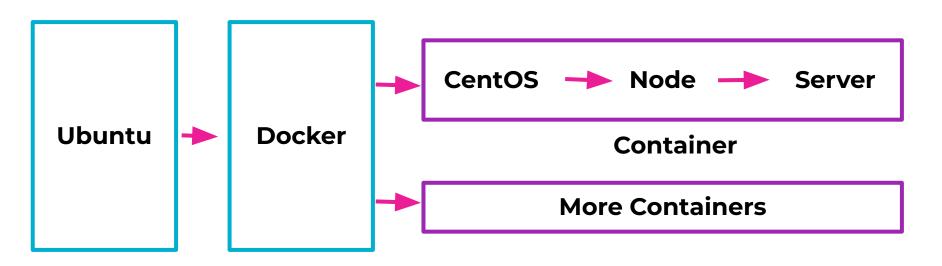
What does it take to run a program?


How do we ensure that a program can run consistently across different systems?

Containerization (n.) -

fancy term for packing together everything a process needs to run, in an isolated environment.

Containers


<u>Idea:</u> Virtualize the layers above the host O/S.

Containers

<u>Idea:</u> Virtualize the layers above the host O/S.

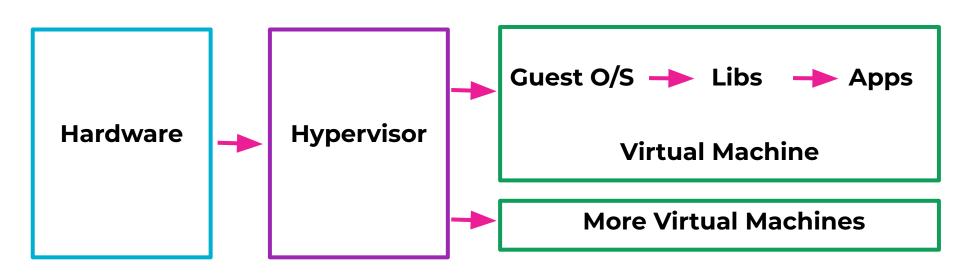
Example:

Why Containers?

Pros:

- Compartmentalization
- 2. Portability size, ease of defining a container, versioning
- 3. Great Ecosystem
- 4. Uses host kernel for allocation of resources

Cons:


- 1. All containers must run atop the same kernel
- 2. Less secure due to sharing of underlying OS (e.g. Meltdown)
- 3. Less flexibility w.r.t hardware requirements

Virtualization (n.) -

abstracting the computer hardware, allowing it to be divided into multiple virtual computers

Virtual Machines (VMs)

<u>Idea:</u> Create a small layer between hardware and operating system that performs this abstraction called the *hypervisor*.

Hypervisors

1. Type 1 (Bare-Metal)

- a. Installed directly on top of the physical server, takes the place of host OS
- b. Most frequently used/most secure, lowest latency
- c. Examples: Hyper-V, KVM, VMWare ESXi

2. Type 2 (Hosted)

- a. Sits on host OS layer, runs as an application in an OS
- b. Allows for interaction between host/guest OS
- c. Higher latency since resources have to be accessed via host OS
- d. Examples: Oracle VirtualBox, VMWare Workstation

Why Virtual Machines?

Pros:

- 1. Separation of *virtual machines* in terms of computation, logic, and storage
- 2. Capable of running VMs with different guest OSes
- 3. Hypervisor has greater control over the amount of system resources each VM is allocated.
- 4. Full isolation security

Cons:

- 1. Larger size, less portable
- 2. Time consuming to build and regenerate

Best of Both Worlds?

Using VMs in tandem with Containers:

- 1. Emulate a specific hardware configuration with VM
- 2. Install a container onto the VM

Additional Resources

- 1. https://www.ibm.com/cloud/learn/hypervisors
- 2. https://www.atlassian.com/microservices/cloud-computing/containers-vs-v
 ms
- 3. https://www.ibm.com/cloud/blog/containers-vs-vms
- 4. https://www.ibm.com/cloud/learn/vmware
- 5. <u>https://stackoverflow.com/questions/16047306/how-is-docker-different-from-a-virtual-machine</u>
- 6. https://itnext.io/getting-started-with-docker-1-b4dc83e64389