
 ELASTIC CUCKOO
PAGE TABLES

Parallelism for Minimizing Virtual Memory
Translation Overhead

Nick Hollon & Rachel Nguyen

Background
Elastic Cuckoo

Hashing

Elastic Cuckoo
Page Table

Design

Elastic Cuckoo
Page Table

Performance

01 02

03 04

Based on Elastic Cuckoo Page
Tables: Rethinking Virtual
Memory Translation for

Parallelism by

Dimitrios Skarlatos, Apostolos
Kokolis, Tianyin Xu, and Josep

Torrellas

BACKGROUND

Radix Page Tables

● Standard implementation of a page table as a multi-level tree
● Walk the page table to find a page table entry
● Address translation with new emerging workloads has become a major performance bottleneck

○ Can account for 20-50 percent of application execution time
○ Page table walks may account for 20-40 percent of main memory access

● Need to find a scalable approach to this problem

Hashed Page Tables

● Address translation involves hashing the virtual page number and using the hash key to index
the page table

● Three limitations:
○ Loss of spatial locality in page table accesses
○ PTEs consume more space since each requires a hash tag
○ Need to handle hash collisions

● Hash collisions are the most significant of these concerns and remain unsolved
○ Main solution is resizing but is expensive
○ Global hash table

■ Cannot have multiple page sizes or page sharing
■ Linear scan of hash table to delete

CUCKOO HASHING

Cuckoo Hashing

● Resolve collision by allowing an element to have multiple possible hashing locations while
being stored in at most one of these locations at a time

● A d-ary cuckoo hash table consists of:

○ d ways TD = {Ti: i ∈ 1..d}

○ d independent hash functions HD= {Hi: i ∈ 1..d}

● Insertion, look-up, and deletion all take O(d) time

2-ary Cuckoo Hash Table

T1 T2 T1 T2 T1 T2

a a c a

b x x

c c H1(c) b

c

x

H1(x)

b

H2(x)

Resizing Cuckoo Hash
Table is Expensive!

“During resizing, a look-up needs to
perform 2 ⨉ d accesses.”

● When the occupancy of TD reaches a Rehashing Threshold, a bigger d-ary cuckoo hash table (T’D, H’D) is
allocated.

● Then, after each insert, a rehash occurs: removing an element from (TD, HD) and inserting it into (T’D, H’D).

ELASTIC
CUCKOO HASHING

Elastic Cuckoo Hashing

● A d-ary elastic cuckoo hash table consists of:

○ d ways TD = {Ti: i ∈ 1..d}; each Ti now has a Rehashing Pointer Pi which is initialized to 0

○ d rehashing pointers PD= {Pi: i ∈ 1..d}

○ d independent hash functions HD= {Hi: i ∈ 1..d} Migrated
Region

Lived Region

Pi

DETAILED
ALGORITHMS

Rehash

T1 T2 T1 T2 T’1 T’2

d b b

e c e c

a a d

P1
P2

P1

P2
H’1(d)

Look-up

function LOOK-UP(x):

for each way i in (TD, HD, PD) do:

for Hi(x) < Pi then:

if T’i[H’i(x)] == x then return true;

else:

if Ti[Hi(x)] == x then return true;

return false

Look-up

T1 T2 T’1 T2 T’1 T’2

H1(x)

H2(x)
H’1(x)

H2(x)
H’1(x)

H’2(x)

H1(x) ≥ P1

H2(x) ≥ P2

H1(x) < P1

H2(x) ≥ P2

H1(x) < P1

H2(x) < P2

Insert

function INSERT(x):

i ←Rand_Pick({1, …, d})

for loop=1 to MAX_ATTEMPTS do:

if Hi(x) < Pi then: x ↔ T’i[H’i(x)]

else: x ↔ Ti[Hi(x)]

if x == ∅ then return true;

i ←Rand_Pick({1, …, d} - {i})

return false

Design

Organization

● d-ary elastic cuckoo hash table indexed by hashing a VPN tag
● Each process has one elastic cuckoo page table for each page size
● Exploits 2 levels of parallelism

Page Table Entry

● Want entries in an elastic cuckoo page table to support clustering and compaction
○ Improves spatial locality

● A single hash table entry contains a VPN tag and multiple consecutive physical page
translation entries packed together
○ Clustering factor depends on the size of a cache line

Cuckoo Walk

● Method for address translation in an elastic cuckoo page table
○ Parallel walk that may look up multiple hash tables in parallel

● Hardware page table walker takes a VPN tag and hashes it using the hash functions of different
hash tables
○ Uses the resulting keys to index multiple hash tables in parallel

Cuckoo Walk Tables

● A cuckoo walk may have to lookup the d ways of S elastic cuckoo page tables
○ S x d parallel lookups

● To reduce the number of lookups, use cuckoo walk tables
● Contain information about which way of which elastic cuckoo page table should be accessed
● 4 types of walks depending on the information contained in the CWTs

○ Complete walk: no information
○ Partial walk: page is not of a given size
○ Size walk: page is of a given size
○ Direct walk: page is of a given size and way of cuckoo hash is known

Cuckoo Walk Table Entries

● VPN tag and consecutive section headers
○ Section headers provide information about a given virtual memory section
○ Section is a range of virtual memory address space translated by one entry in the

corresponding elastic cuckoo page table

Cuckoo Walk Caches

● Cuckoo walk tables reside in memory
● To speed up walking, cache some of the entries in cuckoo walk caches
● These caches are different from the caches in radix page tables since they do not store PTEs

○ Instead they store page size and way information
○ Two implications:

■ On a CWC miss, page walker can proceed to access the target page table entry
right away

■ CWC entry is small so that CWCs have small size and high hit rate
■ PMD-CWC section header covers a 16MB region with 4 bits while the traditional

PMD cache covers 2MB with 64 bits

ELASTIC CUCKOO PAGE
TABLE PERFORMANCE

Elastic Cuckoo Page Table Performance

● Evaluate performances of 4 systems across various workloads in graph analytics,
bioinformatics, high performance computing, and system domains:

○ Baseline 4KB and Cuckoo 4KB: with only 4KB pages

○ Baseline THP and Cuckoo THP: with multiple page sizes by enabling Transparent Huge Pages
in Linux

Application Speedup

Cuckoo 4KB
results in
application
speedup of
3-28% over
Baseline 4KB.

The speedup of
Cuckoo THP over
Baseline THP is
3-18%.

MMU Overhead Reduction

Cuckoo 4KB
reduces MMU
overhead of
Baseline 4KB by
34%.

Cuckoo THP’s
overhead is 41%
lower than
Baseline THP.

CREDITS: This presentation template was created by
Slidesgo, including icons by Flaticon, and infographics

& images by Freepik

THANKS!

Do you have any questions?

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

