
TinyOS

An Embedded Operating System



A Different Kind of Operating System

- programming framework + reusable code components = application-specific OS 
- written in nesC

- no function pointers
- compiler can optimize an entire call path

- no dynamic memory allocation
- instead, memory is statically allocated at compile-time (static virtualization)
- prevents memory fragmentation, runtime allocation failures

- open source 
- designed for networks of sensor nodes:

- limited resources (memory, cpu, etc.)
- reactive concurrency (nodes must be able to respond in real time)
- low-power operation

- uses today include sensor networks, smart meters, and building automation



Component-Based Programming Model

program is a graph of components compiled by 
the nesC compiler

- hardware resources are abstracted as 
components

components:
- interfaces specify split-phase requests for 

services using commands and events, which 
can post tasks

- command: ask component to do something (a 
service; e.g. sending a message)

- event: signal service is complete (e.g. hardware 
interrupt, message arrived)

- task: can be posted to defer computation to later 
(managed by scheduler)



2 types of components: 
1. modules: code
2. configurations: connect other 

components' interfaces
application = top-level configuration

Component-Based Programming Model



Benefits of Component System

- separate interface and implementation
- data privacy
- code reuse
- linguistic structure for nesC optimizations
- easy to work with limited resources

- each program uses a finite number of components
- NesC compiler further minimizes TinyOS program size

- inlines some components to remove procedure call boundary-crossings
- reduces dead code
- removes redundancy

drawback: hard to understand when first looking at a system



Scheduler

- non-preemptive (run-to-completion): tasks run either until they are complete 
or until they explicitly yield control to the scheduler

- tasks are atomic wrt other tasks
- TinyOS programming framework does not require the scheduler to execute 

tasks in a particular order
- standard scheduler is FIFO
- other policies have been implemented, including earliest-deadline first



Concurrency

- Concurrency is event-driven
- split-phase interfaces, asynchronous events, and tasks that defer computation

- asynchronous code = code reachable from at least 1 interrupt handler.
to handle asynchronous code:
1. convert all conflicting code to tasks (synchronous), or
2. use atomic sections 

- NesC atomic keyword guarantees atomicity by turning off interrupts and preventing 
looping

- safety enforced at compile time -- no locks needed!
- time-critical sections of code can be handled in an event handler, even when 

they update shared state



Low Power

- TinyOS is application-specific, so it doesn't contain any unnecessary 
functions

- split-phase operations and event-driven model avoid spinlocks and 
heavyweight concurrency, which reduces CPU usage

- StdControl interface gives components a low-power idle state
- save state in RAM/nonvolatile memory
- inform CPU about decreased resource use (so system can decide whether to use deep 

power save modes)
- hardware/software transparency: can replace software with more efficient 

hardware implementations without changing application structure



Resources

TinyOS: An Operating System for Sensor Networks, especially pp. 115-133 (read 
it here)

Experiences from a Decade of TinyOS Development

You can view the TinyOS GitHub repository here.

https://link.springer.com/chapter/10.1007/3-540-27139-2_7#citeas
https://rdcu.be/cMkN4
https://sing.stanford.edu/site/publications/17
https://github.com/tinyos/tinyos-main

