
MirageOS
Building Custom Kernels with Library Operating Systems



Why Operating Systems: The Traditional Story

● Computers = super expensive
● We need to manage multi-user 

access to shared hardware with 
many processes

● Stable interfaces (networking, 
graphics, etc) to develop software 

● Kernel/Userland Model
○ If something goes wrong in userland, 

we can have kernel sort things out
○ Ensures users and processes canʼt 

monopolize in-demand resources



Why Operating Systems: Today

● Is this still applicable?
○ Yes!
○ But not always

● Modern Web
○ Monoliths -> “Microservices”
○ Containers and virtualization galore!
○ Emphasis on flexibility and scalable systems

Source: tibco.com



Evolution of OS Environments

● Hypervisor
○ 10 machines running at 10% utilization, we just put 

them all on the same machine!
○ Hypervisors like Xen, Hyper-V, and KVM let us run 

isolated operating systems on the same hardware
○ Enables cloud computing on shared, but isolated 

resources

● Does it solve all our problems? No
○ Linux kernel is >25 million LOC (mostly C 😳), >100 

syscalls, and endless interfaces
○ Giant attack surface
○ If we only want to run a single program, a traditional 

OS will have a ton of unnecessary overhead



Unikernels

● Custom kernels that run a specific 
application

● Write our operating system as a library, 
rather than a monolithic system

● Custom kernels import and link 
necessary interfaces
○ Networking, Graphics, Disk Blocks, Crypto, 

Entropy/Randomness, Time, DNS
● Compile down to a kernel with the 

minimal set of features needed to run 
a specific program Source: Mirage.io



MirageOS

● Library operating system for constructing Unikernels
● Written in OCaml

○ Automatic Memory Management
○ Static type-checking and conducive to formal verification
○ Compilation to native code on most platforms
○ Powerful module system for organizing code
○ Worst-case usually within 2x C 



MirageOS: The Guts

● No concept of users, virtual memory, processes, scheduling, or privileges
● “Core” handles CPU + Memory
● Optional abstractions on top of this core
● Compiler can produce application code or compile down to a bootable OS
● Separation of interface signatures and implementation

○ Libraries can run on Unix during development and compile to OS drivers for production

● Event-driven
○ No preemptive threading: programs run until they explicitly pass off control

● First-class support for MacOS, Linux, BSD, Xen, KVM, and more



MirageOS: Writing a “Hello World” Kernel



MirageOS: Advantages
● Tiny Binaries (usually ~100-200kb)
● Tiny memory footprint (a few MB on average)
● Blazing fast startup times (20ms)
● JIT operating systems: Receive a query, boot a kernel, 

process the request, and send it back
● Self-scaling on-demand
● Cross-optimization of kernel and application code
● Eliminates many vulnerabilities (eg. buffer overflows)
● Possible to formally verify critical components



MirageOS: Disadvantages
● Terrible approach for traditional systems
● Programs must be written in pure OCaml

○ Technically possible to link C code, but arduous and potentially unsafe

● No support for protocols with closed specifications
● Illusion of security: Hypervisor vulnerabilities and unrestricted permissions



MirageOS: Further Resources
● https://mirage.io
● https://unikernel.org
● Other Unikernel Projects

○ HalVM (Haskell)
○ GuestVM (Java)
○ LING (Erlang)
○ IncludeOS (C++)
○ Clive (Go)
○ OSv (C, JVM, Ruby, Node.js)
○ Runtime.js (Javascript)
○ Rumprun (POSIX-compliant binaries)
○ Unik

https://mirage.io
https://unikernel.org/

