
April 25, 2022

Computer Science 432 — Lecture 18 — Duane Bailey

xv6 File System Consistency — loggin’  & lockin’



Announcements

✤ Lab today: Lab 7 — Supporting Large Files.  Due next Wednesday. 
This will be our last lab. 

✤ Small group meetings will be held this week and next. 

✤ Office hours as normal: T1-3, F9-10:30. 

✤ O/S Conference begins next Friday (~ 10 days).  Details on PDF delivery next week. 

✤ Wednesday: Shared library support. 
Kelly lecturing next Monday, Duane next Wednesday.
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File System Consistency

✤ The consistency of file systems is very important.
✤ If the file system structure breaks, it’s often permanent.
✤ A race condition in a computation is an inconvenience.
✤ A race condition in a file system is a very bad, long term problem. 

✤ We’ll look at two xv6 file system features that ensure consistency:
✤ The logging system.  This guards against crash-related inconsistencies.
✤ Locking at various levels.  This guards against races that involve files.
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The Logging System

✤ Support for crash recovery.
✤ File systems take time to update.
✤ Systems crash.
✤ The combination requires some mechanism for ensuring 

file system updates are atomic with respect to crashes. 

✤ Logging mechanism:
✤ All disk operations (transactions) are logged and then committed.
✤ If crash happens before commit, the transaction does not happen.
✤ If a crash happens during commit, transaction will finalize on boot.
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Observations about Logging

✤ Things to note about logging:
✤ Logging does not know about file system structure.   

It’s low level: just about blocks written.
✤ Transactions are simply guaranteed to leave the file system consistent. 

Not necessarily “the way you want it.”
✤ The way to think about “consistent state”?  Think about invariants:

✤ No inode points to a block that is unallocated, or
✤ inode nlink counts number of directory entries that point to inode.
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Logging Transaction Granularity

✤ File system call typically leads to a logging transaction:
✤ start_op()
✤ 1 or more log_write()s
✤ end_op()

✤ Logging commits only happen when there are no operations in progress.
✤ Each file system operation has an expected budget of blocks written

✤ If logging area is insufficient, start_op() waits (sleep locks) until space
✤ log_write() detail:

✤ schedules a block to be written to the logging area
✤ “pins it” to make sure it doesn’t leave cache (even if brelse) before write
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Logging Details

✤ All log entries are written to a dedicated area of disk (see superblock)
✤ A transaction header keeps track of 

✤ # of blocks to be written (0 until commit, then #), and 
✤ an array of block addresses

✤ Blocks that follow are the (unique*) updated disk blocks
✤ At end of transaction:

✤ Blocks in logging area are the final list, block count > 0
✤ Blocks are then written to the disk at target locations
✤ Block count is then set to 0.
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Logging Commit Details

✤ A commit for a transaction is a four step process:
✤ write_log() — moves blocks from cache to log area
✤ write_header() — commit point.  Non-zero log header written.
✤ install_trans() — copy blocks from log area to disk.
✤ write_header() — write 0 to header, finalizing transaction 

✤ Useful to think about outcome if you crash at any of these points.
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Crash Recovery Details

✤ What happens at a crash?
✤ If the transaction header has a count of 0, do nothing.
✤ If the count is > 0:

✤ Write blocks to disk in appropriate locations (possibly unnecessary)
✤ Write a 0 in the count in the transaction header. 

✤ With a little thought:
✤ File system transactions are atomic with respect to crashes:

✤ The transaction is fully written, or
✤ Nothing is written
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Thinking About Locking

✤ There are many locks associated 
with the file system

✤ Each lock supports an invariant 
for a specific level of filesystem

✤ Consistency <=> maintained 
invariants

✤ Sometimes consistency at higher 
level of file system depends 
simply on lower level consistency
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Disk-level Locking

✤ struct disk has a vdisk_lock
✤ Held while communicating 

transactions with the virtio disk
✤ Disk operations are then atomic
✤ They’re serialized
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Buffer-Cache Locking

✤ Buffer cache has two locks:
✤ bcache.lock: only one process 

may update cache at a time 
Does not handle full cache…

✤ buf->lock: only one process 
may work with a block at a time 
Sleep-lock acquired in bread() 
released in brelse()
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Logging Level Locking

✤ Log.lock forces serialization of 
access to logging information

✤ Log makes heavy use of 
consistency from bcache 
ie. bread()/brelse()
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Inode Level Locking

✤ Inodes in memory are cached
✤ icache lock serializes allocation

✤ inodes are uniquely in cache
✤ refcounts are accurate

✤ ip->lock (sleep) 
exclusive access to inode fields 

✤ Lock-like characteristics:
✤ ref > 0 in inode keeps inode in $
✤ unlink: inode not freed until 

nlink == 0.
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Inode Level Locking

✤ Inode layer lock-related entry points:
✤ ialloc - allocates a new inode on disk, igets and returns inode from $
✤ iget - increases the reference count in inode $, reads from disk if nec.
✤ ilock - locks inode in inode $
✤ iupdate - updates change to inode on disk.
✤ iput - decreases reference count; calls itrunc if ref == 0 and nlink = 0.

✤ Other entry points, not directly involving locks:
✤ bmap() - fetch block address from inode
✤ readi(), writei() - read or write data to file by inode
✤ stati() - get inode metadata
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Directory and Path Consistency

✤ The consistency at directory and 
pathname levels is result of 
consistency at lower levels
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File Descriptor Consistency

✤ File descriptors are kept in global 
table.
✤ Consistency maintained by 

ftable.lock
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Repeat after me…

“I do not let locks define me.  I define locks.”

“I will not talk about locks any more.  I am happy.”
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