xvO File System Consistency — logein” & lockin’

Computer Science 432 — Lecture 18 — Duane Bailey

April 25, 2022

Announcements

+ Lab today: Lab 7 — Supporting Large Files. Due next Wednesday.
This will be our last lab.

+ Small group meetings will be held this week and next.
% Office hours as normal: T1-3, F9-10:30.
+ O/S Conference begins next Friday (~ 10 days). Details on PDF delivery next week.

+ Wednesday: Shared library support.
Kelly lecturing next Monday, Duane next Wednesday.

Iile System Consistency

+ The consistency of file systems is very important.
« If the file system structure breaks, it’s often permanent.
* A race condition in a computation is an inconvenience.
* A race condition in a file system is a very bad, long term problem.

+ We'll look at two xvb6 file system features that ensure consistency:
+ The logging system. This guards against crash-related inconsistencies.
+ Locking at various levels. This guards against races that involve files.

T'he Logging System

+ Support for crash recovery.
+ File systems take time to update.
* Systems crash.
+ The combination requires some mechanism for ensuring
file system updates are atomic with respect to crashes.

+ Logging mechanism:
+ All disk operations (transactions) are logged and then committed.
« If crash happens before commit, the transaction does not happen.
« If a crash happens during commit, transaction will finalize on boot.

Observations about l.ogging

+ Things to note about logging:

+ Logging does not know about file system structure.
It’s low level: just about blocks written.

+ Transactions are simply guaranteed to leave the file system consistent.
Not necessarily “the way you want it.”

+ The way to think about “consistent state”? Think about invariants:
+ No inode points to a block that is unallocated, or
+ inode nlink counts number of directory entries that point to inode.

Logging lTransaction Granularity

+ File system call typically leads to a logging transaction:
+ start_op()
+ 1 or more log_write()s
+ end_op()
+* Logging commits only happen when there are no operations in progress.
+ Each file system operation has an expected budget of blocks written
+ If logging area is insufficient, start_op() waits (sleep locks) until space
+ log_write() detail:
+ schedules a block to be written to the logging area
+ “pins it” to make sure it doesn’t leave cache (even if brelse) before write

6

Logging Details

+ All log entries are written to a dedicated area of disk (see superblock)
+ A transaction header keeps track of
= # of blocks to be written (0 until commit, then #), and
* an array of block addresses
+ Blocks that follow are the (unique*) updated disk blocks
+* At end of transaction:
+ Blocks in logging area are the final list, block count > 0
+ Blocks are then written to the disk at target locations
+ Block count is then set to 0.

L.ogging Commit Details

+ A commit for a transaction is a four step process:
+ write_log() — moves blocks from cache to log area
+ write_header() — commit point. Non-zero log header written.
+ install_trans() — copy blocks from log area to disk.
+ write_header() — write 0 to header, finalizing transaction

+ Useful to think about outcome if you crash at any of these points.

Crash Recovery Details

+ What happens at a crash?
+ If the transaction header has a count of 0, do nothing.
+ If the count is > 0:
+ Write blocks to disk in appropriate locations (possibly unnecessary)
+ Write a 0 in the count in the transaction header.

+ With a little thought:
+ File system transactions are atomic with respect to crashes:
+ The transaction is fully written, or
+ Nothing is written

Thinking About lLocking

+ There are many locks associated
with the file system

+ Each lock supports an invariant
for a specific level of filesystem

+ Consistency <=> maintained
Invariants

+ Sometimes consistency at higher
level of file system depends
simply on lower level consistency

Lock

Description

bcache.lock
cons.lock
ftable.lock
itable.lock
vdisk_lock
kmem.lock
log.lock

pipe’s pi->lock
pid_lock
proc’s p->lock
wait_lock
tickslock
inode’s ip->lock
buf’s b->lock

Protects allocation of block buffer cache entries
Serializes access to console hardware, avoids intern
Serializes allocation of a struct file in file table
Protects allocation of in-memory inode entries
Serializes access to disk hardware and queue of DM
Serializes allocation of memory

Serializes operations on the transaction log
Serializes operations on each pipe

Serializes increments of next_pid

Serializes changes to process’s state

Helps wait avoid lost wakeups

Serializes operations on the ticks counter

Serializes operations on each inode and its content
Serializes operations on each block buffer

Figure 6.3: Locks in xv6

10

Disk-level Locking

+ struct disk has a vdisk lock
+ Held while communicating
transactions with the virtio disk
+ Disk operations are then atomic
+ They’re serialized

Lock Description

bcache.lock Protects allocation of block buffer cache entries
cons.lock Serializes access to console hardware, avoids intermr
ftable.lock Serializes allocation of a struct file in file table
itable.lock Protects allocation of in-memory inode entries
vdisk_lock Serializes access to disk hardware and queue of DM
kmem.lock Serializes allocation of memory

log.lock Serializes operations on the transaction log

pipe’s pi->lock Serializes operations on each pipe

pid_lock Serializes increments of next_pid

proc’s p->lock Serializes changes to process’s state

wait_lock Helps wait avoid lost wakeups

tickslock Serializes operations on the ticks counter

inode’s 1p->lock
buf’s b->lock

Serializes operations on each inode and its content
Serializes operations on each block buffer

Figure 6.3: Locks in xv6

11

Buffer-Cache Locking

+ Buffer cache has two locks:

+ bcache.lock: only one process
may update cache at a time
Does not handle full cache...

* but->lock: only one process
may work with a block at a time
Sleep-lock acquired in bread()
released in brelse()

Lock

Description

bcache.lock
cons.lock
ftable.lock
1table.lock
vdisk lock
kmem.lock
log.lock

pipe’s pi->lock
pid_lock
proc’s p->lock
wait_lock
tickslock
inode’s 1p->lock
buf’s b->lock

Protects allocation of block buffer cache entries
Serializes access to console hardware, avoids intern
Serializes allocation of a struct file in file table
Protects allocation of in-memory inode entries
Serializes access to disk hardware and queue of DM
Serializes allocation of memory

Serializes operations on the transaction log
Serializes operations on each pipe

Serializes increments of next_pid

Serializes changes to process’s state

Helps wait avoid lost wakeups

Serializes operations on the ticks counter

Serializes operations on each inode and its content
Serializes operations on each block buffer

Figure 6.3: Locks in xv6

12

Logeing Level l.ocking

+ Log.lock forces serialization ot
access to logging information
+ Log makes heavy use of

consistency from bcache
ie. bread()/brelse()

Lock Description

bcache.lock Protects allocation of block buffer cache entries
cons.lock Serializes access to console hardware, avoids intermr
ftable.lock Serializes allocation of a struct file in file table
itable.lock Protects allocation of in-memory inode entries
vdisk_lock Serializes access to disk hardware and queue of DM
kmem.lock Serializes allocation of memory

log.lock Serializes operations on the transaction log

pipe’s pi->lock Serializes operations on each pipe

pid_lock Serializes increments of next_pid

proc’s p->lock Serializes changes to process’s state

wait_lock Helps wait avoid lost wakeups

tickslock Serializes operations on the ticks counter

inode’s 1p->lock
buf’s b->lock

Serializes operations on each inode and its content
Serializes operations on each block buffer

Figure 6.3: Locks in xv6

13

Inode Level l.ocking

Description

Lock
+ Inodes in memory are cached beache.lock
. S o . cons.lock
+ icache lock serializes allocation o ook
* inodes are uniquely in cache lablelock
vdisk loc
“* refcounts are accurate kmem lock
o 1D-> log.lock
lp IOCk (Sleep) . . pipe’s pi1->lock
exclusive access to inode fields pid_lock
proc’s p->lock
. o wait_lock
% Lock-like characteristics: tickslock
. . . . Inode’s 1p->lock
+ ref > 0 in inode keeps inode in $ buE boolock

+ unlink: inode not freed until
nlink ==

Protects allocation of block buffer cache entries
Serializes access to console hardware, avoids intermr
Serializes allocation of a struct file in file table
Protects allocation of in-memory inode entries
Serializes access to disk hardware and queue of DM
Serializes allocation of memory

Serializes operations on the transaction log
Serializes operations on each pipe

Serializes increments of next_pid

Serializes changes to process’s state

Helps wait avoid lost wakeups

Serializes operations on the ticks counter

Serializes operations on each inode and its content
Serializes operations on each block buffer

Figure 6.3: Locks in xv6

14

Inode Level l.ocking

* Inode layer lock-related entry points:
* 1alloc - allocates a new inode on disk, igets and returns inode from $
* iget - increases the reference count in inode $, reads from disk if nec.
+ ilock - locks inode in inode $
+ jupdate - updates change to inode on disk.
* iput - decreases reference count; calls itrunc if ret == 0 and nlink = 0.

* Other entry points, not directly involving locks:
+* bmap() - fetch block address from inode
+ readi(), writei() - read or write data to file by inode
+ stati() - get inode metadata

15

Directory and Path Consistency

* The consistency at directory and
pathname levels is result of
consistency at lower levels

Lock Description

bcache.lock Protects allocation of block buffer cache entries
cons.lock Serializes access to console hardware, avoids intern
ftable.lock Serializes allocation of a struct file in file table
itable.lock Protects allocation of in-memory inode entries
vdisk_lock Serializes access to disk hardware and queue of DM
kmem.lock Serializes allocation of memory

log.lock Serializes operations on the transaction log

pipe’s pi->lock Serializes operations on each pipe

pid_lock Serializes increments of next_pid

proc’s p->lock Serializes changes to process’s state

wait_lock Helps wait avoid lost wakeups

tickslock Serializes operations on the ticks counter

inode’s 1p->lock
buf’s b->lock

Serializes operations on each inode and its content
Serializes operations on each block buffer

Figure 6.3: Locks in xv6

16

I"ile Descriptor Consistency

* File descriptors are kept in global
table.

+ Consistency maintained by
ftable.lock

Lock Description

bcache.lock Protects allocation of block buffer cache entries
cons.lock Serializes access to console hardware, avoids intern
ftable.lock Serializes allocation of a struct file in file table
itable.lock Protects allocation of in-memory inode entries
vdisk_lock Serializes access to disk hardware and queue of DM
kmem.lock Serializes allocation of memory

log.lock Serializes operations on the transaction log

pipe’s pi->lock Serializes operations on each pipe

pid_lock Serializes increments of next_pid

proc’s p->lock Serializes changes to process’s state

wait_lock Helps wait avoid lost wakeups

tickslock Serializes operations on the ticks counter

inode’s 1p->lock
buf’s b->lock

Serializes operations on each inode and its content
Serializes operations on each block buffer

Figure 6.3: Locks in xv6

17

Repeat atter me...

“T do not let locks define me. I define locks.”

“I will not talk about locks any more. I am happy.”

18

