xvO File Systems — Low-level /O & Bulfer Cache

Computer Science 432 — Lecture 17 — Duane Bailey

April 20, 2022

Announcements

+* No small group meetings; office hours W1-4, R1-4, F9-10:30.
Meetings will happen next week (and, maybe, the next)

* Lab 6 is due Friday.

<Finishing: direct examination of a file system>

Iile Systems

+ Next few lectures will be spent discussing File Systems/Chapter 8.

+ Today: review disk structure, disk I/O & buffer caching.
+ Monday (4/26): Consistency, using logging and locking.
+* Next Wednesday (4/28): Other file system approaches.

File System Abstractions

File descriptor

Pathname

Directory

Inode

+ Today we’re looking at the 2 lowest levels Loaging

Buffer cache

Disk

Figure 8.1: Layers of the xv6 file system.

5

Iile System Layer Concepts

+ File system layers, lowest to highest:
+ Disk system—a “virtio” disk device interface provided by gemu.
+ Buffer cache—a cache of blocks/buffers that avoids constant disk I/ O

The virtio Disk Subsystem (gemu)

+ The virtio devices are a open, standards-based mechanism for

implementing paravirtualized devices. (author: Rusty Russell)

+* An approach to providing classes of virtual devices that look like
physical devices to virtual environments and hypervisors.

+ virtio-blk: takes the contents of the a file and presents it internally as a
disk device.

+ gemu implementation is particularly high performance (100Mb/s)

+ xv6 driver is found in kernel / virtio disk.c and virtio.h

The virtio Disk Intertace

+ The virtio block device is controlled by several memory-mapped regs.
+ Register descriptions are found in virtio.h
+ Based at location 0x10001000.
+ For example, first register, offset 0 contains magic 0x74726976 (why?)
+ Communication with drive controlled by a ring of “available” request
and “used” response descriptors.
+ Drive raises an interrupt whenever a request has been responded to.
+ Interrupts routed through trap system, much like console UART.
+ Drive performs direct memory access (DMA) to read / write data.

The Block Reader/Writer Method

+ One method allows user to read (or write) a block from (or to) the disk
* virtio_disk_rw(buf, wr):performs read (write) of buf if wr=0 (1)
+ Hides complexity:
+ Converts from a disk block (1024b) address to a sector (512b) address
+ Adding request to the disk queue
+ Waiting for the interrupt/sleeplock associated with the request
+ Transferring of information from the response to buf

The buf Structure

+ Metadata: {
. : : struct buf
+ valid: is data valid, here? int valid; // has data been read from disk?
+ disk: this a target of disk I/ O? int disk; // does disk "own" buf?
. uint dev;
“* dev: the dlSk uint blockno:
+ blockno: the address of block S‘F"gc'ct ;leiplock lock;
uln retcntg,
+ refno: # kernel rets to but struct buf *prev; // LRU cache list
+ prev/next: LRU ordering struct buf *next;
uchar data[BSIZE];
&
+ Payload:

+ data: the buffer data

10

The Buftfer Cache

+ The kernel uses a buffer cache to minimize disk I/O requests
+ Unit of disk transfer is a buffer represented by the buf structure

+ Cache ($) features we hope to achieve:
+ Requesting a buffer from the cache
+ Checks for presence of buffer in the cache
+ If it is missing, it is read from the disk (virtio_disk_rw), added to cache
+ Returns buffer (now) resident in cache
+ Writing a buffer to the cache

+ Writes through the cache
+ Cache replacement policy—Ileast recently used—implemented with circ. queue

11

Cache Imtialization

* NBUF bufters are kept in a doubly linked list:
* The cache maintains a dummy node, head (seems unnecessary)
* head.next is just-used bufter
+ buf.next was used less recently than buf
+ Unused butfers appear after used butters

* binit () sets up the buffer cache; all buffers unreferenced

12

lypical Buller Access

+ Typically, to process a disk block:
* bread(dev, b#) reads to bp
* Process butter bp

+ brelse(bp) de-refs the bp

+ Buffer cache keeps track of
referenced buffers, releases others

+ Reference counting helps $ decisions

struct superblock sb;

// Read the super block.
static void

readsb(int dev, struct superblock xsb)

{
struct buf xbp;

bp = bread(dev, 1);
memmove(sb, bp—>data, sizeof(xsb));
brelse(bp);

13

Bufter access details

+ bget () looks for a buffer in the buffer cache; allocates one if not found
+ Increases the reference count

+ bread () reads a block from disk into a bufter:
+ Calls bget to find existing or allocate new buf
+ If buffer is not valid, data is read from the disk

* brelse () indicates you're not using—releasing—the buffer
+ Decreases the reference count
« If reference count is nonzero, moves buffer to head of LRU queue

14

Writing a buller

* From inode and up, we call log_write to write a buffer
+ (As we'll see on Monday) adds the write to buffers in transaction

* bwrite () is only called by the logging layer:
+ Writing only happens as transaction commits

* bwrite() is responsible for writing a buffer to the disk
+ Simply: calls virtio_disk_rw(buffer, 1)

15

Recall: dinode

“ Structure of file on disk
+* dinode holds metadata
* first 12 addresses point
to disk blocks
+ last address points to
a disk block of pointers
to even more disk blocks
= Within f/s inode holds
dinodes along with even
more metadata

dinode

type

major

minor

nlink

size

address 1 /

/

address 12 —

Indirect \

Figure 8.3: The representation of a file on disk.

data
data
data
indirect block/
address 17
address 256
\ data

// Return the disk block address of the nth block in inode 1ip.
// If there is no such block, [IEY allocates one.
static uint
iﬂ()de e bma PLE (struct inode *ip, uint bn)
o o - {
g p uint addr, x*a;
struct buf xbp;

if(bn < NDIRECT){
if((addr = ip->addrs[bn]) == 0)

<+ Reads the block bn from file ip—>addrs[bn] = addr = balloc(ip—>dev);
: . . return addr;
+ inode describes file \
“ balloc(dev) finds a free on == NOIRECT;
data block on disk, if(bn < NINDIRECT){
. . // Load indirect block, allocating if necessary.
marks it allocated, zeros it if((addr = ip->addrs [NDIRECT]) == @)

ip—>addrs [NDIRECT] = addr = balloc(ip—>dev);
bp = bread(ip->dev, addr);

+ Part of a larger transaction a = (uintx)bp—>data;
. , , if((addr = al[bn]) == 0){
* again, log_write: writes albn] = addr = balloc(ip->dev);
only when transaction , rog-write(bp);
committed brelse(bp);
return addr;
}

* bmap () 1s subject of next lab... vanic("I. out of range"):

17

