
April 20, 2022

Computer Science 432 — Lecture 17 — Duane Bailey

xv6 File Systems — Low-level I/O & Buffer Cache

Announcements

✤ No small group meetings; office hours W1-4, R1-4, F9-10:30. 
Meetings will happen next week (and, maybe, the next) 

✤ Lab 6 is due Friday.

2

<Finishing: direct examination of a file system>

File Systems

✤ Next few lectures will be spent discussing File Systems/Chapter 8. 

✤ Today: review disk structure, disk I/O & buffer caching.
✤ Monday (4/26): Consistency, using logging and locking.
✤ Next Wednesday (4/28): Other file system approaches.

4

File System Abstractions

✤ Today we’re looking at the 2 lowest levels

5

File System Layer Concepts

✤ File system layers, lowest to highest:
✤ Disk system—a “virtio” disk device interface provided by qemu.
✤ Buffer cache—a cache of blocks/buffers that avoids constant disk I/O

6

The virtio Disk Subsystem (qemu)

✤ The virtio devices are a open, standards-based mechanism for
implementing paravirtualized devices. (author: Rusty Russell)
✤ An approach to providing classes of virtual devices that look like

physical devices to virtual environments and hypervisors.
✤ virtio-blk: takes the contents of the a file and presents it internally as a

disk device.
✤ qemu implementation is particularly high performance (100Mb/s)
✤ xv6 driver is found in kernel/virtio_disk.c and virtio.h

7

The virtio Disk Interface

✤ The virtio block device is controlled by several memory-mapped regs.
✤ Register descriptions are found in virtio.h
✤ Based at location 0x10001000.
✤ For example, first register, offset 0 contains magic 0x74726976 (why?)

✤ Communication with drive controlled by a ring of “available” request
and “used” response descriptors.

✤ Drive raises an interrupt whenever a request has been responded to.
✤ Interrupts routed through trap system, much like console UART.
✤ Drive performs direct memory access (DMA) to read/write data.

8

The Block Reader/Writer Method

✤ One method allows user to read (or write) a block from (or to) the disk
✤ virtio_disk_rw(buf, wr): performs read (write) of buf if wr=0 (1)
✤ Hides complexity:

✤ Converts from a disk block (1024b) address to a sector (512b) address
✤ Adding request to the disk queue
✤ Waiting for the interrupt/sleeplock associated with the request
✤ Transferring of information from the response to buf

9

The buf Structure

✤ Metadata:
✤ valid: is data valid, here?
✤ disk: this a target of disk I/O?
✤ dev: the disk
✤ blockno: the address of block
✤ refno: # kernel refs to buf
✤ prev/next: LRU ordering 

✤ Payload:
✤ data: the buffer data

10

The Buffer Cache

✤ The kernel uses a buffer cache to minimize disk I/O requests 

✤ Unit of disk transfer is a buffer represented by the buf structure 

✤ Cache ($) features we hope to achieve:
✤ Requesting a buffer from the cache

✤ Checks for presence of buffer in the cache
✤ If it is missing, it is read from the disk (virtio_disk_rw), added to cache
✤ Returns buffer (now) resident in cache

✤ Writing a buffer to the cache
✤ Writes through the cache

✤ Cache replacement policy—least recently used—implemented with circ. queue
11

Cache Initialization

✤ NBUF buffers are kept in a doubly linked list:
✤ The cache maintains a dummy node, head (seems unnecessary)
✤ head.next is just-used buffer
✤ buf.next was used less recently than buf
✤ Unused buffers appear after used buffers 

✤ binit() sets up the buffer cache; all buffers unreferenced

12

Typical Buffer Access

✤ Typically, to process a disk block:
✤ bread(dev, b#) reads to bp
✤ Process buffer bp
✤ brelse(bp) de-refs the bp 

✤ Buffer cache keeps track of
referenced buffers, releases others 

✤ Reference counting helps $ decisions
13

Buffer access details

✤ bget() looks for a buffer in the buffer cache; allocates one if not found
✤ Increases the reference count 

✤ bread() reads a block from disk into a buffer:
✤ Calls bget to find existing or allocate new buf
✤ If buffer is not valid, data is read from the disk 

✤ brelse() indicates you’re not using—releasing—the buffer
✤ Decreases the reference count
✤ If reference count is nonzero, moves buffer to head of LRU queue

14

Writing a buffer

✤ From inode and up, we call log_write to write a buffer
✤ (As we’ll see on Monday) adds the write to buffers in transaction 

✤ bwrite() is only called by the logging layer:
✤ Writing only happens as transaction commits 

✤ bwrite() is responsible for writing a buffer to the disk
✤ Simply: calls virtio_disk_rw(buffer, 1)

15

Recall: dinode

16

✤ Structure of file on disk
✤ dinode holds metadata
✤ first 12 addresses point 

to disk blocks
✤ last address points to 

a disk block of pointers  
to even more disk blocks

✤ Within f/s inode holds 
dinodes along with even
more metadata

inode e.g.—bmap

17

✤ Reads the block bn from file
✤ inode describes file
✤ balloc(dev) finds a free 

data block on disk, 
marks it allocated, zeros it 

✤ Part of a larger transaction
✤ again, log_write: writes

only when transaction
committed 

✤ bmap() is subject of next lab…

