
April 18, 2022

Computer Science 432 — Lecture 16 — Duane Bailey

xv6 File Systems — Overview

Announcements

✤ Masks are back…Zoom links for lectures in calendar. 
Other times: https://tinyurl.com/dab-office. 

✤ Meeting during lab times, in lab. Optional, if you need help. 

✤ No small group meetings; office hours T1-3, W1-4, R1-4, F9-10:30. 

✤ Lab 6 is due Friday. Questions?

2

File Systems

✤ Next few lectures will be spent discussing File Systems/Chapter 8. 

✤ Today: overview and file system structure.
✤ Wednesday: disk I/O & buffer caching.
✤ Next Monday: Consistency, using logging and locking.

3

File System Abstractions

✤ File systems in xv6 are nesting abstractions:
✤ Highest level: the general file descriptor
✤ Middle levels: file system structure
✤ Lowest levels: disk I/O & buffering 

✤ Layers build increasingly complex
abstractions from bottom to top

4

File System Layer Concepts

✤ File system layers, lowest to highest:
✤ Disk system—a “virtio” disk device interface provided by qemu.
✤ Buffer cache—a cache of blocks/buffers that avoids constant disk I/O
✤ Logging—a layer that supports transactions that help survive crashes
✤ inode—the basic file structure component shared by all Unix

systems
✤ Directory—a simpl(istic) directory structure we’ve already seen
✤ Pathname—a recursive structure for traversing the directory tree
✤ File descriptor—a general interface to files, directories, and devices.

5

The Disk as a Block-Addressable Memory

✤ Unix was developed for disk drives:
✤ A hard disk consists of several platters
✤ Each platter has concentric tracks. 

(Parallel tracks on platters form cylinders.)
✤ Each track is divided into sectors.
✤ We can enumerate the sectors of a disk 

with sequential platter::track::sector
addresses 

✤ To Unix: disk is a random access array of data
6

wikipedia

The Unix File System Structure

✤ The xv6 assumption about disk layout is:
✤ Every block has 1024 bytes; block address is 2-bytes (64K blocks)
✤ Block 0: the boot block contains boot code
✤ Block 1: the superblock (SB). Metadata about parameterization of disk
✤ Then: a series of blocks holding the disk log. Size determined by SB
✤ Then: a series of blocks holding inodes. The metadata describing files.
✤ Then: a series of blocks holding a bitmap identifying used blocks.
✤ Then: all the blocks that hold data within files.

7

The Boot Block

✤ No matter what the file system structure, block 0 is the boot code.
✤ Early stages of the boot process are not very able.
✤ The approach to loading boot code must be very simple. 

✤ It is fairly easy to load block 0 off a disk drive:
✤ Approximately the same approach is used to read block 0 from 

a floppy disk, or a CD, or a hard drive, or an SSD.
✤ Interfaces for complex/high performance disks facilitate booting 

✤ Boot code then focuses on reading a larger boot file from drive
8

The Superblock

✤ Depending on the geometry of the disk, there are many parameters that
determine the structure of a Unix file system.

✤ The superblock holds these metadata.
✤ Superblock is typically block 1.
✤ With information from superblock, you should be able to compute

locations of other important structures, easily:
✤ Transaction log—location and extent
✤ Inodes—location and number; individual inode in known location
✤ Bitmap—location and extent; block n bit at a computable location
✤ Data blocks—location of data block n is easily computed.

9

The Superblock

10

(Look at fs.img using “od -Xa -Ax fs.img”)

The (disk) inode—Anonymous File Descriptor

✤ The dinode is the basic structure
describing a file:
✤ Type (plain, dir, device);  

major/minor
✤ nlink—reference count for file
✤ size—extent of file, in bytes  

(note: no EOF!)
✤ addrs array:

✤ direct: address of each
successive logical block

✤ indirect: address of one block of
addresses

11

The (disk) inode

12

The (disk) inode—Anonymous File Descriptor

✤ Notice that the inode describes a nameless file:
✤ Directory entries attach name(s) to inodes
✤ Multiple references to a single file are called hard links
✤ File remains in system as long as there is a single link

✤ The ratio of direct::indirect links is a tradeoff:
✤ One indirect block: simple to code and compute
✤ Limits maximum size of files
✤ Could easily have multiple indirect blocks, or tree-ish structure.

✤ All used data blocks on disk are pointed to by some inode. This can be checked!
✤ Inodes are numbered starting at 1. Why?
✤ Data blocks are addressed using disk block addresses (no one accesses boot)

13

The Directory Structure

✤ Directories are simply files that contain lists of fixed sized dirents
✤ We’ve seen this in our implementation of find.
✤ The dirent contains only an inode number and a name

✤ All other metadata is stored in (shared) inode
✤ Zero inode means: unused dirent
✤ Name is zero-terminated if it doesn’t use all DIRSIZ bytes

✤ Requires a sequential read of the directory to find a file. 
This could be (and often is) improved with a tree-based layout of
dirents 

✤ Inode 1 is always the root directory (/) for the file system.
14

The Bitmap

✤ The bitmap is used to keep track of the availability of all disk blocks.
✤ The bits of the bitmap are interpreted as a long bitfield
✤ Bitmap is lengthened to take up a whole number of blocks
✤ A bit value of 1 indicates allocation, 0 otherwise. 

✤ Notice: it is impossible to reconstruct this bitmap by looking at data 
Any check of this structure must scan inodes.

15

mkfs: Make file system

✤ In xv6, “make qemu” causes a build or make of the file system:
✤ You can now read the source code for mkfs/mkfs.c; an Ubuntu app.
✤ Notice that there are decisions made here; tradeoffs are weighed:

✤ How many inodes do we need?
✤ Increasing inodes eats into data storage
✤ Useful to think about average number of blocks in a file.

✤ How much log space should be reserved?
✤ We’ll think about this in a week as we consider transactions.

16

<Direct examination of a file system>

