Scheduling Intricacies

Computer Science 432 — Lecture 15 — Duane Bailey

April 13, 2022

Announcements

+ Oftfice Hours: Today, 1-3:30pm, tomorrow 1-4pm, Friday 9-10:30am.
+ No small group meetings this week.
+ Lab 6 is out — due next Friday. Context and context-switching.

* Friday 2:35, Wege: Registration Information Session.

The Intricacies of Scheduling

+ Many operating systems support the dedicated machine abstraction.
+ Time is a resource that must be shared by a machine’s users.
+ The O/S gives each process a slice of time.
+ The length of this guantum is a parameter that can be tuned.
+ Dependent heavily on the types of jobs—the job mix—expected.

+ We'll look at scheduler designs for xv6, Linux, and VMS. And Windows.

The xvb6 Scheduler: Stmplicity

+ We’ve spent a bit of time thinking about scheduling in xvé6:
* Goal is a teaching operating system
+ Missing aspects: no users, no time, no challenging computation
+ Hand-rolled context switching (assembly)
+ Next selected process is simply the next process that is RUNNABLE

+ Processes are scheduled through preemption:
+ An external force—machine mode timer—stops ongoing processing

“+ Recall:
+ 3 cores, ea. w/scheduler

%+ Scheduler runs forever

+ Dedicated thread

* Bvery process quantum
+ Begins at swtch call
+ Ends at swtch call

+ Timer dictates quantum
+ Interval set to 100ms
* No priority system

* Preemptive Round-Robin
+ Simple & fair

// Per-CPU process scheduler.

// Each CPU calls scheduler() after setting itself up.
// Scheduler never returns. It loops, doing:

// — choose a process to run.

// - swtch to start running that process.

// — eventually that process transfers control

// via swtch back to the scheduler.

void

scheduler(void)

{

}

struct proc *xp;
struct cpu xc = mycpu();

}

c—>proc = 0;
for(;;){

// Avoid deadlock by ensuring that devices can interrupt.
intr_on();

for(p = proc; p < &roc[NPROC]; p++) {

}

acquire(&p—>1lock);
if (p—>state == RUNNABLE) {
// Switch to chosen process. It is the process's job
// to release its lock and then reacquire it
// before jumping back to |us.
p—>state = RUNNING;
c—>proc = p;
swtch(&c—>context, &p->context);

// Process is done running for now.
// It should have changed its p—->state before coming back.
c—>proc = 0,

s

release(&p—>1lock);

L.ab 6— Lattle Thread lLibrary Scheduler

+ Threading library manages a small collection of threads
+ Goal is the very simplest non-preemptive scheduling.
+ Hand-rolled context switching code (assembly).
+ Each thread must voluntarily surrender the machine
+ yield & fini
+ these methods initiate a scheduler that runs for a short time.
+ The scheduler (you will write) must find another RUNNABLE thread

+* You want the process selection to be fair:
* The current RUNNABLE process should be choice of last resort

* schedule:
* This routine looks for another RUNNABLE thread and twitches to it.
o2 Recall. x If more than one routine is RUNNABLE, use an approach that leads to
‘ * fair behavior: Every thread should get a chance to run, occasionally.
* It 1s possible that the current thread runs again.
- 10 threads/ one Ccore * If there are no threads remaining, twitch to the main thread.
*/
static void
. schedule(void)
+ Scheduler runs quickly ¢
// ADD CODE HERE
+ BEvery thread run:)
1—
oo 1 * yield:
Ends at d thtCh Call * For the main thread: leave state (as MONITOR) and schedule a new thread.
. * For other threads: change state to RUNNABLE and schedule a new thread.
+ Resumes in that call " 9
void
yield(void)

* Friendly yields important "/ 0D cone e

schedule();
+ Similar to python yield !

*x fini:
* For the main thread: leave state (as MONITOR) and schedule a new thread.
* For other threads: change state to FREE and schedule a new thread.

+ Non-preemptive Round-Robin ¥/

void

+ Flexible & fair pntivord

// ADD CODE HERE
schedule():

}

Observations

+ The approach is to simplify the concept of scheduling:
+ There is no explicit run gueue structure:
+ Just a list of processes/threads
+ The queue is the collection of those members that are RUNNABLE
* Any fairness comes from carefully observing a round-robin ordering
+ Scheduling is subtly different so queue-ordering is are also subtle:
+ In xv6, scheduler is continuous, with nested loops imposing order
+ In threading, the scheduler is called many times, with a search loop

Typical Unix Details— the Linux Scheduler

+ Unix scheduling must address a number of different demands:
+ Goal is handling a mix of job types.
+ Hand-rolled context switching code (assembly).
+ Each process has an associated scheduling priority
“+ priorities range from -20 (favorable) to 20

* You can adjust the priorities by being nice:
+ “Nicing” a process is the process of adjusting its priority.
+ Only the root can nice by negative values.

+ Unix quanta:
+ prio 0: 100ms jitty

* negative priorities
+ longer jitfies
* slope is significant
* target: real-time
e.g. audio

* positive priorities
+ shorter jiffies
+ shallow slope
* target: compute bound

* Preemptive Priority Scheduler
+ Resilient for job mixes
+* Always evolving.

[timeslice length]

____100msecs

FaN

Fal

PN

e e > [nice level]

-20

+19

kernel.org

Detalls

+ The Linux scheduler is called the sched other or normal scheduler.
+ The highest priority (niceness) processes get the largest time slices.
+ Each process has a counter that keeps track of its remaining slice time.

+ There is a single run gueue of processes that are runnable.
+ The queue is ordered by the time slice counter.

* When the runnable processes run out of time
+ Each runnable process gets its counter reset.
+ Tasks not in the run queue get counter reset plus half of current counter.
+ Thus interactive tasks (which block on I/O) get a priority boost.

11

: \ @ —
. 1 | (i (-
Versatile O/S Schedu mng 6
e [
—= / - 1

+ VMS: a very popular Comr?ercial O/S from DEC

| | ' id Cutler.

ihllieifrfsn gslnse;é.ci?iac‘;lachine: DEC VAX, the SPEC deﬁnition CPU power 1
+ CISC with dedicated context switching instructions

+ Leveraged significant experience With .real-tlme O/S

+ Processes have dynamic process priorities.
* Priorities range from 0 to 31 |
+ When process computes, its priority drops
+* When a process yields, its priority increases

12

+ VMS priority cycling:
+ (0-15 are user processes
+ Typical: 4-8
+ NULL: O
+ 16-31 are real-time
* Run for many quanta
only preempted by higher
priority process
+ Round-robin within same prio.

+ Load & Save Process Context
+ Complex instructions
+ Each moves 2 dozen registers!
+ SVPCTX in many places.
+ LDPCTX used once.

+ Preemptive Priority Scheduler
+ Peak of scheduling complexity

OUTSWAP : @ EVENT‘. AST, DEL
EVENT,
AST, DEL

WAIT LEF A;’:';EE-L
o CREATE
HIBERNATE
RESUME
DEL
SUSPEND "X F
INSWAP
SCHED N N ——— -
@ RESCHED OUTSWAP A OUTSWAP AST, DEL @

WAIT CEF

PAGE FAULT READ

~" FAULT -'“, B k. . COMPLETION
N FREE PAGE WAIT " , i
, ety : AST, DEL
_ A / FREE PAGE AVAILABLE

walt states to COM

COLLIDED PAGE ' ~ OUTSWAP
DELET g
y WAIT 1 i
N/ F1 W AST DEL
o N | P | COLLIDED PAGE
| : AVAILABLE
G
MUTEX WAIT OR |\ ' = QUTSWAR
RESOURCE WAIT NN \ N
, \ AST, DEL,
X) V| 1 MUTEX OR RESOURCE
\ -l | AVAILABLE
AST AST enqueuing \ ; /
DEL Process deletion | OUTSWAP
* Transitions from memory-resident v R
ait states to are not
labeled to avold cluttering
the figure. They are caused
by the same events shown for

trangitions to the COMO state.

Repre
with a

Represents a process state
with a multiple queues

s a process state
queue

VMS Internals

Detalls

+ Processes are primarily identified by their priority:
+ There are 32(!) different run queues: 0 has just the null/idle
* Accessed in round-robin order.
+ Law of the Jungle: when a higher priority process is runnable it preempts.

+ Priorities 0-15 are time-sliced for normal time-sharing processes:
+ Rescheduling (using entire quantum) causes a lowering of priority
+ Waiting processes get a boost in priority.
* Priorities 16-31 are for real time processes:
+ Priorities never change
+ Governed entirely by Law of the Jungle

14

Windows Scheduling

+ Windows is another Dave Cutler design....
* Very similar to VMS:
+ 32 priorities (0 is lowest, 31 highest)
* There are sub-priorities within each main priority:.
+ No notion of real-time processes (this is good for a desktop machine)
+ But: 0-15 can get boosts, while 16-31 never do.
+ Generally, it appears that “Law-of-the-Jungle” style scheduling applies

+ A fairly complex preemptive scheduler for interactive computing.

15

