
April 13, 2022

Computer Science 432 — Lecture 15 — Duane Bailey

Scheduling Intricacies

Announcements

✤ Office Hours: Today, 1-3:30pm, tomorrow 1-4pm, Friday 9-10:30am.

✤ No small group meetings this week.

✤ Lab 6 is out — due next Friday. Context and context-switching.

✤ Friday 2:35, Wege: Registration Information Session.

2

The Intricacies of Scheduling

✤ Many operating systems support the dedicated machine abstraction.
✤ Time is a resource that must be shared by a machine’s users.
✤ The O/S gives each process a slice of time.
✤ The length of this quantum is a parameter that can be tuned.
✤ Dependent heavily on the types of jobs—the job mix—expected.

✤ We’ll look at scheduler designs for xv6, Linux, and VMS. And Windows.

3

The xv6 Scheduler: Simplicity

✤ We’ve spent a bit of time thinking about scheduling in xv6:
✤ Goal is a teaching operating system
✤ Missing aspects: no users, no time, no challenging computation
✤ Hand-rolled context switching (assembly)
✤ Next selected process is simply the next process that is RUNNABLE

✤ Processes are scheduled through preemption:
✤ An external force—machine mode timer—stops ongoing processing

4

✤ Recall:
✤ 3 cores, ea. w/scheduler

✤ Scheduler runs forever
✤ Dedicated thread
✤ Every process quantum

✤ Begins at swtch call
✤ Ends at swtch call

✤ Timer dictates quantum
✤ Interval set to 100ms
✤ No priority system

✤ Preemptive Round-Robin
✤ Simple & fair

Lab 6—Little Thread Library Scheduler

✤ Threading library manages a small collection of threads
✤ Goal is the very simplest non-preemptive scheduling.
✤ Hand-rolled context switching code (assembly).
✤ Each thread must voluntarily surrender the machine

✤ yield & fini
✤ these methods initiate a scheduler that runs for a short time.

✤ The scheduler (you will write) must find another RUNNABLE thread
✤ You want the process selection to be fair:

✤ The current RUNNABLE process should be choice of last resort
6

✤ Recall:
✤ 10 threads, one core

✤ Scheduler runs quickly
✤ Every thread run:

✤ Ends at a twitch call
✤ Resumes in that call

✤ Friendly yields important
✤ Similar to python yield

✤ Non-preemptive Round-Robin
✤ Flexible & fair

Observations

✤ The approach is to simplify the concept of scheduling:
✤ There is no explicit run queue structure:

✤ Just a list of processes/threads
✤ The queue is the collection of those members that are RUNNABLE

✤ Any fairness comes from carefully observing a round-robin ordering
✤ Scheduling is subtly different so queue-ordering is are also subtle:

✤ In xv6, scheduler is continuous, with nested loops imposing order
✤ In threading, the scheduler is called many times, with a search loop

8

Typical Unix Details— the Linux Scheduler

✤ Unix scheduling must address a number of different demands:
✤ Goal is handling a mix of job types.
✤ Hand-rolled context switching code (assembly).
✤ Each process has an associated scheduling priority

✤ priorities range from -20 (favorable) to 20

✤ You can adjust the priorities by being nice:
✤ “Nicing” a process is the process of adjusting its priority.
✤ Only the root can nice by negative values.

9

✤ Unix quanta:
✤ prio 0: 100ms jiffy

✤ negative priorities
✤ longer jiffies
✤ slope is significant
✤ target: real-time

e.g. audio

✤ positive priorities
✤ shorter jiffies
✤ shallow slope
✤ target: compute bound

✤ Preemptive Priority Scheduler
✤ Resilient for job mixes
✤ Always evolving.

kernel.org

Details

✤ The Linux scheduler is called the sched_other or normal scheduler.
✤ The highest priority (niceness) processes get the largest time slices.
✤ Each process has a counter that keeps track of its remaining slice time.

✤ There is a single run queue of processes that are runnable.
✤ The queue is ordered by the time slice counter.

✤ When the runnable processes run out of time
✤ Each runnable process gets its counter reset.
✤ Tasks not in the run queue get counter reset plus half of current counter.
✤ Thus interactive tasks (which block on I/O) get a priority boost.

11

Versatile O/S Scheduling—VMS

✤ VMS: a very popular commercial O/S from DEC
Chief engineer: David Cutler.
✤ Runs on specific machine: DEC VAX, the SPEC definition CPU power 1

✤ CISC with dedicated context switching instructions
✤ Leveraged significant experience with real-time O/S
✤ Processes have dynamic process priorities.

✤ Priorities range from 0 to 31
✤ When process computes, its priority drops
✤ When a process yields, its priority increases

12

✤ VMS priority cycling:
✤ 0-15 are user processes

✤ Typical: 4-8
✤ NULL: 0

✤ 16-31 are real-time
✤ Run for many quanta

only preempted by higher
priority process

✤ Round-robin within same prio.

✤ Load & Save Process Context
✤ Complex instructions
✤ Each moves 2 dozen registers!
✤ SVPCTX in many places.
✤ LDPCTX used once.

✤ Preemptive Priority Scheduler
✤ Peak of scheduling complexity

VMS Internals

Details

✤ Processes are primarily identified by their priority:
✤ There are 32(!) different run queues: 0 has just the null/idle
✤ Accessed in round-robin order.
✤ Law of the Jungle: when a higher priority process is runnable it preempts.

✤ Priorities 0-15 are time-sliced for normal time-sharing processes:
✤ Rescheduling (using entire quantum) causes a lowering of priority
✤ Waiting processes get a boost in priority.

✤ Priorities 16-31 are for real time processes:
✤ Priorities never change
✤ Governed entirely by Law of the Jungle

14

Windows Scheduling

✤ Windows is another Dave Cutler design….
✤ Very similar to VMS:

✤ 32 priorities (0 is lowest, 31 highest)
✤ There are sub-priorities within each main priority.
✤ No notion of real-time processes (this is good for a desktop machine)

✤ But: 0-15 can get boosts, while 16-31 never do.
✤ Generally, it appears that “Law-of-the-Jungle” style scheduling applies

✤ A fairly complex preemptive scheduler for interactive computing.
15

