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Computer Science 432 — Lecture 14 — Duane Bailey

The Scheduler in xv6



Announcements

✤ Lab meeting today for Lab 6.  A two-week lab thinking about context and context-switching. 

✤ No small group meetings this week, but additional office hours.
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The Dedicated Machine Abstraction

✤ The Big Picture. 
The dedicated machine abstraction allows us to pretend that we have the machine to ourselves. 
We do not. 

✤ Typically, there are multiple users.
✤ There are processes that help to maintain the infrastructure.
✤ And, of course there is the kernel. 

✤ We share space on the machine (caching, virtual memory, through memory managment).
✤ We share time on the machine (multiplexing, through the scheduling of processes).

✤ Part of designing an O/S is identifying best how to support the dedicated machine abstration.
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The xv6 Approach to Multiplexing

✤ Time-shared operating systems (as opposed to real-time operating systems [another course]):
✤ Multiplex time by giving processes a fixed slice or quantum of time to run 

(The length is a jiffy, or a tick, or a fuzz.)
✤ There are no “hard” deadlines; processes are switched periodically
✤ Compute-bound processes use the entire quantum.
✤ I/O-bound processes frequently yield the processor to allow devices to perform I/O 

✤ Concerns & open problems
✤ How do we establish the quantum?
✤ How do we switch between processes?
✤ How do we build a locking system that works with our approach?
✤ How does multiplexing interact with multiple processors?
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How Context Switching Happens

✤ In xv6, all context switches happen the same way (though for several reasons):
✤ The old process (the one that is running out of time), switches to its kernel thread
✤ The old process kernel thread switches to the cpu-specific kernel scheduler thread.
✤ The kernel scheduler thread finds the appropriate new process.
✤ The kernel scheduler switches to (ie. resumes) 

the new process’s kernel thread.
✤ The new process kernel thread returns to  

user-mode, resuming the suspended computation. 

✤ Notice that when a process is created (how?), it starts  
by pretending to “resume” at the beginning of main.
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Saving Registers

✤ What needs to be saved as part of the process’s context-switch?
✤ Current program counter.
✤ Current stack (from stack top down).  So: current stack pointer.
✤ All general purpose registers.  We make no assumptions about register saving conventions.
✤ Very few CSR register values—most are agnostic of the process running. 

✤ In general, the What is context? question is important, and differs based on the need.
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Saving & Restoring Registers

✤ What needs to be saved as part of the process’s context-switch?
✤ Current program counter.
✤ Current stack (from stack top down).  So: current stack pointer.
✤ All general purpose registers.  We make no assumptions about register saving conventions.
✤ But: remember, all paths to the kernel store registers in p->trapframe.
✤ Very few CSR register values—most are agnostic of the process running. 

✤ The items to be stored in a context switch are saved in the context structure in xv6.
✤ All context switching happens in the swtch(old,new) assembly. 

Because this is a subroutine call, the calling process makes no assumptions about caller-saved 
registers, so swtch only needs to save callee-saved registers.
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The Path through the Scheduler

✤ The scheduler thread has its stack and context saved in the cpu.context field.
✤ The scheduler context was set up at boot time, at the very last task of main.
✤ When a process has to/wants to yield, it calls yield(), which grabs the p->lock and notes 

this process is RUNNABLE.
✤ This calls sched().  This saves the process context and loads the scheduler context. 

✤ We’re now in the scheduler. 

✤ When a new process is selected, it was selected from a pool of processes that had 
previously called sched.   
Thus: swtch moves us from the scheduler to the sched routine of the new process.

✤ A return from sched returns us to yield which returns to usertrap which then calls 
usertrapret.
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(A Note on Spinlocks)

✤ As we move through the context switch, the lock on the old process is held.
✤ This lock is initially held by the process itself.
✤ When the context switches, the lock logically sticks with the cpu.
✤ The lock is released inside of the scheduler. 

✤ It is very important that the lock be held through the context switch.  Why? 
Read the important details about invariants in §7.3.
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The sleep/wakeup Synchronization

✤ As we noted in the last lecture, it’s helpful to be able to hold a lock for long periods of time. 

✤ Sleeplocks are the answer.  They use the sleep & wakeup mechanism. 

✤ Sleep puts a process to sleep while it waits for an event involving a channel. 

✤ Wakeup is called when the event happens, and attempts to wake any sleepers.
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How sleep Works

✤ Sleep is called when something a process needs is not available. 

✤ It is assumed that that determination was made by looking at a resource while holding a lock
✤ The resource is called the channel and the lock is called the condition lock. 

✤ When sleep marks the process state as SLEEPING it releases the condition lock.
✤ Observation: the resource evaluation and the resulting sleep appear atomic to wakeup-ers. 

✤ In most other ways, sleep works like yield: it calls sched to surrender the machine.
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How wakeup Works

✤ Wakeup is called when a resource associated with a channel becomes available.  E.g. sleeplock. 

✤ When wakeup is called, it scans the process table, looking for sleepers on the channel.
✤ It grabs the process’s lock and marks it RUNNABLE.
✤ Since RUNNABLE processes are targets for scheduling, they will return from sleep.
✤ When the return from sleep, they must re-check the resource 

It may have been given away, again, already!
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Pipe Management

✤ Chapter 7 also discusses the management of pipes (kernel/pipe.c)
✤ The locking mechanism, here, is essentially a counting semaphore
✤ The resource counted is the number of bytes available in the pipe buffer 

✤ Writers produce (V) a data resource:
✤ They write the buffer under the pipe’s lock.
✤ When the buffer is full, they wake the readers, and go to sleep.
✤ If they write something new, they wake any readers. 

✤ Readers consume (P) the data resource:
✤ The read the buffer under the pipe’s lock.
✤ When the buffer is empty, they go to sleep.
✤ Whenever they successfully read, the wake any sleeping writers.
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Parent & Child Relations

✤ Relations between parents and children are fraught with sleeping & waking 

✤ Parents typically wait for children to finish.
✤ When a child calls exit, it wakes its parent and then changes its state to ZOMBIE.
✤ When a parent waits for a child to finish, it scans the process table looking for

✤ Zombie children.  If any, it picks one, and returns with exit status.
✤ Otherwise, it sleeps, waiting for a child process to die. 

✤ If a parent dies early, its children are handed off to init, which is always waiting.
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