
April 11, 2022

Computer Science 432 — Lecture 14 — Duane Bailey

The Scheduler in xv6

Announcements

✤ Lab meeting today for Lab 6. A two-week lab thinking about context and context-switching.

✤ No small group meetings this week, but additional office hours.

2

The Dedicated Machine Abstraction

✤ The Big Picture.
The dedicated machine abstraction allows us to pretend that we have the machine to ourselves.
We do not.

✤ Typically, there are multiple users.
✤ There are processes that help to maintain the infrastructure.
✤ And, of course there is the kernel.

✤ We share space on the machine (caching, virtual memory, through memory managment).
✤ We share time on the machine (multiplexing, through the scheduling of processes).

✤ Part of designing an O/S is identifying best how to support the dedicated machine abstration.

3

The xv6 Approach to Multiplexing

✤ Time-shared operating systems (as opposed to real-time operating systems [another course]):
✤ Multiplex time by giving processes a fixed slice or quantum of time to run

(The length is a jiffy, or a tick, or a fuzz.)
✤ There are no “hard” deadlines; processes are switched periodically
✤ Compute-bound processes use the entire quantum.
✤ I/O-bound processes frequently yield the processor to allow devices to perform I/O

✤ Concerns & open problems
✤ How do we establish the quantum?
✤ How do we switch between processes?
✤ How do we build a locking system that works with our approach?
✤ How does multiplexing interact with multiple processors?

4

How Context Switching Happens

✤ In xv6, all context switches happen the same way (though for several reasons):
✤ The old process (the one that is running out of time), switches to its kernel thread
✤ The old process kernel thread switches to the cpu-specific kernel scheduler thread.
✤ The kernel scheduler thread finds the appropriate new process.
✤ The kernel scheduler switches to (ie. resumes)

the new process’s kernel thread.
✤ The new process kernel thread returns to

user-mode, resuming the suspended computation.

✤ Notice that when a process is created (how?), it starts
by pretending to “resume” at the beginning of main.

5

Saving Registers

✤ What needs to be saved as part of the process’s context-switch?
✤ Current program counter.
✤ Current stack (from stack top down). So: current stack pointer.
✤ All general purpose registers. We make no assumptions about register saving conventions.
✤ Very few CSR register values—most are agnostic of the process running.

✤ In general, the What is context? question is important, and differs based on the need.

6

Saving & Restoring Registers

✤ What needs to be saved as part of the process’s context-switch?
✤ Current program counter.
✤ Current stack (from stack top down). So: current stack pointer.
✤ All general purpose registers. We make no assumptions about register saving conventions.
✤ But: remember, all paths to the kernel store registers in p->trapframe.
✤ Very few CSR register values—most are agnostic of the process running.

✤ The items to be stored in a context switch are saved in the context structure in xv6.
✤ All context switching happens in the swtch(old,new) assembly.

Because this is a subroutine call, the calling process makes no assumptions about caller-saved
registers, so swtch only needs to save callee-saved registers.

7

The Path through the Scheduler

✤ The scheduler thread has its stack and context saved in the cpu.context field.
✤ The scheduler context was set up at boot time, at the very last task of main.
✤ When a process has to/wants to yield, it calls yield(), which grabs the p->lock and notes

this process is RUNNABLE.
✤ This calls sched(). This saves the process context and loads the scheduler context.

✤ We’re now in the scheduler.

✤ When a new process is selected, it was selected from a pool of processes that had
previously called sched.
Thus: swtch moves us from the scheduler to the sched routine of the new process.

✤ A return from sched returns us to yield which returns to usertrap which then calls
usertrapret.

8

(A Note on Spinlocks)

✤ As we move through the context switch, the lock on the old process is held.
✤ This lock is initially held by the process itself.
✤ When the context switches, the lock logically sticks with the cpu.
✤ The lock is released inside of the scheduler.

✤ It is very important that the lock be held through the context switch. Why?
Read the important details about invariants in §7.3.

9

The sleep/wakeup Synchronization

✤ As we noted in the last lecture, it’s helpful to be able to hold a lock for long periods of time.

✤ Sleeplocks are the answer. They use the sleep & wakeup mechanism.

✤ Sleep puts a process to sleep while it waits for an event involving a channel.

✤ Wakeup is called when the event happens, and attempts to wake any sleepers.

10

How sleep Works

✤ Sleep is called when something a process needs is not available.

✤ It is assumed that that determination was made by looking at a resource while holding a lock
✤ The resource is called the channel and the lock is called the condition lock.

✤ When sleep marks the process state as SLEEPING it releases the condition lock.
✤ Observation: the resource evaluation and the resulting sleep appear atomic to wakeup-ers.

✤ In most other ways, sleep works like yield: it calls sched to surrender the machine.

11

How wakeup Works

✤ Wakeup is called when a resource associated with a channel becomes available. E.g. sleeplock.

✤ When wakeup is called, it scans the process table, looking for sleepers on the channel.
✤ It grabs the process’s lock and marks it RUNNABLE.
✤ Since RUNNABLE processes are targets for scheduling, they will return from sleep.
✤ When the return from sleep, they must re-check the resource

It may have been given away, again, already!

12

Pipe Management

✤ Chapter 7 also discusses the management of pipes (kernel/pipe.c)
✤ The locking mechanism, here, is essentially a counting semaphore
✤ The resource counted is the number of bytes available in the pipe buffer

✤ Writers produce (V) a data resource:
✤ They write the buffer under the pipe’s lock.
✤ When the buffer is full, they wake the readers, and go to sleep.
✤ If they write something new, they wake any readers.

✤ Readers consume (P) the data resource:
✤ The read the buffer under the pipe’s lock.
✤ When the buffer is empty, they go to sleep.
✤ Whenever they successfully read, the wake any sleeping writers.

13

Parent & Child Relations

✤ Relations between parents and children are fraught with sleeping & waking

✤ Parents typically wait for children to finish.
✤ When a child calls exit, it wakes its parent and then changes its state to ZOMBIE.
✤ When a parent waits for a child to finish, it scans the process table looking for

✤ Zombie children. If any, it picks one, and returns with exit status.
✤ Otherwise, it sleeps, waiting for a child process to die.

✤ If a parent dies early, its children are handed off to init, which is always waiting.

14

