
April 6, 2022

Computer Science 432 — Lecture 13 — Duane Bailey

Locking Details in xv6



Announcements

✤ (Optional) small group meetings are in the Microscopy Lab,  
Hopper Basement Tunnel City Corner (Room G10) 
Wed 11-12:15 (A), 1:10-2:25 (B), 2:35-3:50 (C)  
Thu 9:55-11:10 (D), 1:10-2:25(E), 2:35-3:50 (F) 

✤ O/S Conference topic contracts due today.  Please turn these in this morning. 

✤ Chapter 7 is due for Monday.  We’ll be thinking about threading in our next lab.
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Lock design

✤ Recall that a lock involves a shared memory location capable of holding an integer. 

✤ The most obvious way that two processes could share a location is in the kernel. 

✤ We have seen several different lock variables:
✤ the lock that governs access to process state,
✤ the lock that controls access to the freelist, and
✤ the lock that controls access to the nextpid. 

✤ Each of these governs access to critical sections that update some shared state.
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What makes a critical section?

✤ An important part of using locks, of course, is the identification of critical sections.
✤ Typically, it involves a shared state that is written  

      and  
possibly read or written concurrently.

✤ An example:  The nextpid variable.
✤ Process identifiers are allocated by

✤ (1) Reading the nextpid variable.
✤ (2) Updating the nextpid variable.

✤ Clearly it is important that pid values are unique.
✤ It’s not so important that they be consecutive.
✤ The worry is that two different threads will execute pid = nextpid at the same time.
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int allocpid(void) 
{ 
   int pid; 

   pid = nextpid; 
   nextpid = nextpid+1; 

   return pid; 
}
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int allocpid(void) 
{ 
   int pid; 
   acquire(&pid_lock); 
   pid = nextpid; 
   nextpid = nextpid+1; 
   release(&pid_lock); 
   return pid; 
}



How about reference counting?

✤ When we are sharing physical pages in page tables,  
we use a reference counter 

✤ By design, there are several places where  
the reference counter is updated

✤ In kshare(pa), we increment the counter.
✤ In kfree(pa), we decrement the counter.
✤ What’s important, here, is that the reference counter 

accurately reflects the number of copies.
✤ Any place a reference counter is modified,  

it becomes a part of a race.
✤ Reference counting should be guarded by a lock.
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in kshare(pa) 
{ . . . 
   // saturating 

   if (*counter < 255)  
      *counter += 1; 

}

in kfree(pa) 
{ . . . 
   // saturating 

   if (*counter > 0 && *counter < 255) 
      *counter -= 1; 
   if (*counter == 0) . . . 

}
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in kshare(pa) 
{ . . . 
   // saturating 
   acquire(&kmem.lock); 
   if (*counter < 255)  
      *counter += 1; 
   release(&kmem.lock); 
}

in kfree(pa) 
{ . . . 
   // saturating 
   acquire(&kmem.lock); 
   if (*counter > 0 && *counter < 255) 
      *counter -= 1; 
   if (*counter == 0) . . . 
   release(&kmem.lock); 
}



Lock granularity.

✤ Any shared value that is potentially in a race must be protected by a lock
✤ Fine-grained approach: Each shared variable is guarded by a dedicated lock 

✤ e.g. pid_lock guards nextpid
✤ e.g. p->lock guards state of process p.

✤ Coarse-grained approach: An entire structure is guarded
✤ e.g. kmem.lock guards the entire free list 

(subtle: the freelist variable could be subject to a race, but also every run.next)
✤ Very coarse-grained approach: The entire kernel is guarded!

✤ e.g. Linux’s Big Kernel Lock (BKL).
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Locks in xv6

✤ The xv6 operating system uses two different types of mutex (mutual exclusion) locks: 

✤ Spinlocks (see spinlock.c).  We saw these in the last class.
✤ These locks use tight loops with atomic amoswap operations.
✤ Looping (in acquire) is a waste of time.
✤ Spinlocks cannot yield the CPU, if they did there might be deadlock.
✤ Spinlocks cannot be interrupted, for similar reason.  Long holds are problematic. 

✤ Sleep-locks (see sleeplock.c).
✤ These locks cause the process to sleep while waiting for acquire.
✤ They require additional complications: wait and notify.
✤ It’s possible to yield the CPU while holding a sleep-lock.
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Locks in xv6
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Chains of Locks

✤ All complex systems have multiple, interacting, critical sections.
✤ When a multiple locks must be held, they must always be acquired in the same order.

✤ Example: Suppose an airport has a runway and 2 taxiways.  All require a lock.
✤ An arriving plane first wants to claim the runway and then,  

after landing it wants to claim the appropriate taxiway.
✤ A departing plane first wants its taxiway and then, 

after taxiing it wants to claim the runway.
✤ Two planes—one arriving and one departing—may deadlock.
✤ As a result, all required resources are acquired in the same order. 

e.g. You cannot arrive or depart until you have (1) a taxiway and then (2) the runway.
✤ All the job of air traffic controllers….
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Spinlocks and Interrupts

✤ When you hold a spinlock, it’s important you not surrender the cpu; 
interrupts must be turned off. 

✤ acquire(lk) — turns off interrupts, if they’re on.
✤ release(lk) — turns interrupt on, if this lock turned them off. 

✤ allows the holding of a sequence of spinlocks.
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Sleep-locks.

✤ Sleep-locks are more complex structures that require coordination with the scheduler.
✤ The sleep lock contains a field, locked, that indicates someone is holding the lock.
✤ The sleep lock’s lock is protected by a spinlock, lk.

✤ You must hold lk to change lock.
✤ When the sleep-lock is attempting to acquire a lock in use

✤ It goes to sleep with the lock as its channel,  
but only after sleep releases the spinlock.

✤ When the sleep-lock is attempting to release a lock it holds
✤ It calls wakeup to re-schedule the process sleeping on the lock,  

re-acquiring the spinlock 

✤ Pay attention to the discussion of sleep and wakeup in sections 7.5-7.7.
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Dijkstra’s Semaphores: Locks that Count

✤ A semaphore is a synchronization primitive that governs n resources
✤ Two operatations P(sem) and V(sem) 

EWD was Dutch: probeer for “try”, and verhoog for “increase” or vrij for “free”.
✤ The semaphore sem is initialized with the value n 

reflecting the fact there are n resources available.
✤ P(sem) waits until sem > 0 and then atomically decrements it.
✤ V(sem) atomically increments sem.
✤ Note that if n is 1, this is a mutex.

✤ Producer-Consumer relationship (e.g. bounded buffers in pipes)
✤ The value of the semephore keeps track of how many more objects may be produced 

before one must be consumed.  It’s initialized to the size of the pipe.
✤ The producer gets a resource ready, calls P(sem) and when it returns,  

it puts the item in the buffer.
✤ The consumer takes a resource from the buffer and then calls V(sem), freeing a slot
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