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Announcements

+ (Optional) small group meetings are in the Microscopy Lab,
Hopper Basement Tunnel City Corner (Room G10)
Wed 11-12:15 (A), 1:10-2:25 (B), 2:35-3:50 (C)
Thu 9:55-11:10 (D), 1:10-2:25(E), 2:35-3:50 (F)

+ /S Conference topic contracts due today. Please turn these in this morning,.

+ Chapter 7 is due for Monday. We’ll be thinking about threading in our next lab.



L.ock design

+ Recall that a lock involves a shared memory location capable of holding an integer.
+* The most obvious way that two processes could share a location is in the kernel.
* We have seen several different lock variables:
+ the lock that governs access to process state,
+ the lock that controls access to the freelist, and

+ the lock that controls access to the nextpid.

+ Each of these governs access to critical sections that update some shared state.



What makes a ermtical section?

+* An important part of using locks, of course, is the identification of critical sections.
+ Typically, it involves a shared state that is written

and | | |
possibly read or written concurrently. }”t allocpid(void)
+* An example: The nextpid variable. int pid;

* Process identifiers are allocated by
* (1) Reading the nextpid variable.
+ (2) Updating the nextpid variable.
+ Clearly it is important that pid values are unique. return pid;
+ It's not so important that they be consecutive. }
+ The worry is that two different threads will execute pid = nextpid at the same time.

pid = nextpid;
nextpid = nextpid+l];
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How about reference counting?

in kshare(pa)

+* When we are sharing physical pages in page tables, Lo ,
// saturating

we use a reference counter

1T (*counter < 255)

+ By design, there are several places where rcounter += 1

the reference counter is updated \

o

In kshare(pa), we increment the counter.

In kfree(pa), we decrement the counter.

What's important, here, is that the reference counter

accurately reflects the number of copies. |

+ Any place a reference counter is modified, 1 izgaﬁggir; ? & Tcounter < 255)
it becomes a part of a race. if (*counter == (f))

+ Reference counting should be guarded by a lock.

in kfree(pa)

O

// saturating




How about reference counting?

in kshare(pa)
+* When we are sharing physical pages in page tables, {

// saturating
we use a reference counter

acquire (&kmem. lock) ;
if (*counter < 255)

+ By design, there are several places where rcounter += 1;
: release (&kmem. lock) ;
the reference counter is updated \
+ In kshare(pa), we increment the counter.

in kfree(pa)

o

In kfree(pa), we decrement the counter.

+ What's important, here, is that the reference counter |/, saturating
accurately reflects the number of copies. acquire (&kmem.lock) ;
. . (o 1 X X
+ Any place a reference counter is modified, 1T (Fcounter > O && *counter < 255)
, *counter -= 1;
it becomes a part of a race. if (*counter == 0) .
+ Reference counting should be guarded by a lock. release (&kmem.lock) ;




L.ock granularity.

* Any shared value that is potentially in a race must be protected by a lock
* Fine-grained approach: Each shared variable is guarded by a dedicated lock
+ e.g. pid_lock guards nextpid
+* e.g. p->lock guards state of process p.
+ Coarse-grained approach: An entire structure is guarded
+ e.g. kmem.lock guards the entire free list
(subtle: the freelist variable could be subject to a race, but also every run.next)

+ Very coarse-grained approach: The entire kernel is guarded!
+ e.g. Linux’s Big Kernel Lock (BKL).



l.ocks 1n xv6

+* The xv6 operating system uses two different types of mutex (mutual exclusion) locks:

+ Spinlocks (see spinlock.c). We saw these in the last class.
+ These locks use tight loops with atomic amoswap operations.
+ Looping (in acquire) is a waste of time.
+ Spinlocks cannot yield the CPU, if they did there might be deadlock.
+ Spinlocks cannot be interrupted, for similar reason. Long holds are problematic.

+ Sleep-locks (see sleeplock.c).
+ These locks cause the process to sleep while waiting for acquire.
* They require additional complications: wait and notify.
+ It's possible to yield the CPU while holding a sleep-lock.



l.ocks 1n xv6

Lock

Description

bcache.lock
cons.lock
ftable.lock
1table.lock
vdisk lock
kmem.lock
log.lock

pipe’s pi1->lock
pid_lock
proc’s p->lock
wait_lock
tickslock
inode’s 1p->lock
buf’s b->lock

Protects allocation of block buffer cache entries

Serializes access to console hardware, avoids intermixed output
Serializes allocation of a struct file in file table

Protects allocation of in-memory inode entries

Serializes access to disk hardware and queue of DMA descriptors
Serializes allocation of memory

Serializes operations on the transaction log

Serializes operations on each pipe

Serializes increments of next_pid

Serializes changes to process’s state

Helps wait avoid lost wakeups

Serializes operations on the ticks counter

Serializes operations on each inode and its content

Serializes operations on each block buffer

Figure 6.3: Locks in xv6

10



Chains of L.ocks

+ All complex systems have multiple, interacting, critical sections.
* When a multiple locks must be held, they must always be acquired in the same order.
+ Example: Suppose an airport has a runway and 2 taxiways. All require a lock.
* An arriving plane first wants to claim the runway and then,
after landing it wants to claim the appropriate taxiway:.
* A departing plane first wants its taxiway and then,
after taxiing it wants to claim the runway.
* Two planes—one arriving and one departing—may deadlock.
As a result, all required resources are acquired in the same order.
e.g. You cannot arrive or depart until you have (1) a taxiway and then (2) the runway.
+ All the job of air traffic controllers....

<
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Spinlocks and Interrupts

* When you hold a spinlock, it’s important you not surrender the cpu;
interrupts must be turned off.

+ acquire(lk) — turns off interrupts, if they’re on.
+ release(lk) — turns interrupt on, if this lock turned them off.

+ allows the holding of a sequence of spinlocks.
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Sleep-locks.

+ Sleep-locks are more complex structures that require coordination with the scheduler.
+ The sleep lock contains a field, locked, that indicates someone is holding the lock.
+ The sleep lock’s lock is protected by a spinlock, 1k.
* You must hold 1k to change lock.
+* When the sleep-lock is attempting to acquire a lock in use
+ It goes to sleep with the lock as its channel,
but only after sleep releases the spinlock.
* When the sleep-lock is attempting to release a lock it holds
+ It calls wakeup to re-schedule the process sleeping on the lock,
re-acquiring the spinlock

+ Pay attention to the discussion of sleep and wakeup in sections 7.5-7.7.
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Dykstra’s Semaphores: L.ocks that Count

+ A semaphore is a synchronization primitive that governs n resources
+ Two operatations P(sem) and V(sem)
EWD was Dutch: probeer for “try”, and verhoog for “increase” or vrij for “free”.
+ The semaphore sem is initialized with the value n
reflecting the fact there are n resources available.
+ P(sem) waits until sem > 0 and then atomically decrements it.
+ V(sem) atomically increments sem.
= Note that if nn is 1, this is a mutex.
+ Producer-Consumer relationship (e.g. bounded buffers in pipes)
+ The value of the semephore keeps track of how many more objects may be produced
before one must be consumed. It’s initialized to the size of the pipe.
+ The producer gets a resource ready, calls P(sem) and when it returns,
it puts the item in the buffer.
+* The consumer takes a resource from the buffer and then calls V(sem), freeing a slot
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