Critical Section Protection (Locks, Continued,)

Computer Science 432 — Lecture 12 — Duane Bailey

April 4, 2022

Announcements

+ Today, in lab, review of Lab 5 solution

+ Small Group Meetings, Microscopy Lab, Hopper Science, Ground Floor.
Optional, but: why not?

+ O/S Conference topic contracts available. Return by Wednesday, April 6. Happy to discuss.

+ Updated syllabus, on-line.

Critical Sections

O

%

There is concurrency in xv6. For example, we have three processors.
Sometimes you're interested in exclusively executing sections of code that are critical.
Examples:

+* Modifying the free list in the kernel page allocator.

+* Modifying the struct proc structure in proc.c

One approach to managing access to critical sections is the use of locks.
Failure to appropriately manage access to critical sections could lead to:
+ Arace condition.

+ Deadlock.

+ Livelock.

+ Starvation.

Today, we’ll look at lock design.

Sharing Memory Between Processors

* The memory in xv6 is shared among all cpu’s/processors:
+ Every processor can see all of memory.
+ Every processor can execute the kernel.
+ Processes can freely move between processors, over time.

+ RISC-V has a number of instructions that support atomic access to memory:
* Atomic operators, “AMOs”.
+ Load-reserved, store-conditional operators, “LR/SC”.

Atomicity Operators

+ By definition, the atomicity operators:
+* Are complex. You might attempt to do the same things with 2 or more instructions.
+* Access memory. Since internal state of the CPU is not shared, the only concern is memory.
+ Guaranteed atomicity. Concurrent instructions that involve AMOs guarantee the outcome is
the same as executing the AMO before or after the other instructions.
+ In short: the AMOs act like operations that happen directly in memory:.

+* Example: amoswap rd, rs1, rs2 (Similar to: csrrw rd, rsl, rs2, but involving memory.)
+ rd is assigned value at memory pointed to bey rs].
* memory at rsl gets value in rs2.

+* AMO guarantees require consistency protocols in the cache.
+ L1% and L2$ are dedicated to the CPU.
+ L3% is shared. This level of cache is responsible for managing atomic access to memory.

l.oad-Reserved/Store-Conditional

* The load-reserved (LR) and store-conditional (SC) operations work together:
* LR loads a value from memory location and places a “reservation” on that address
+ SC stores a value to a memory location, but only if there is a reservation there.
+ Regular loads and stores clear the reservation at their addresses.

The Atomieity Axiom

Volume I: RISC-V Unprivileged ISA V20191213

A.3.3 Atomicity Axiom

Atomicity Axiom (for Aligned Atomics): If » and w are paired load and
store operations generated by aligned LR and SC instructions in a hart

h, s is a store to byte z, and r returns a value written by s, then s must
precede w in the global memory order, and there can be no store from

a hart other than h to byte x following s and preceding w in the global
memory order.

T'he Progress Axiom

A.3.4 Progress Axiom

Progress Axiom: No memory operation may be preceded in the global
memory order by an infinite sequence of other memory operations.

Implementing Compare-and-Swap with LLR/SC

a0 holds address of memory location
al holds expected value
a2 holds desired value
a0 holds return value, 0 if successful, '0 otherwise
* An example atomic cas:
operation, built with 1r.w t0, (a0) # Load original value.
LR/SC. bne t0, al, fz(ail) # Doesn’t match, so fail.
sc.w t0, a2, (a0l # Try to update.
N compareAndSw?p(aQ,al,aZ) bnez t0, cas # Retry if store-conditional failed.
checks to see if *a® == al 1i a0, O # Set return to success.
and, if so, sets *a® = a2 and jr ra # Return.
returns 0 (success). fail:
Otherwise, returns 1. 1i a0, 1 # Set return to failure.
jr ra # Return.

Figure 8.1: Sample code for compare-and-swap function using LR/SC.

Managing Critical Sections

P(1):

* Suppose we have a number of processes, P(i), each sharing for { (en’)cr }{, code)
a critical section of code that must be exclusively executed critical section

by at most one process. { exit code }
outside code

+ Three properties are required for successful sharing of critical code: }

+* Mutual Exclusion. If process P(i) is in the critical section, no other process can be there too.

+ Progress. If no process is in the critical section, and some wish to, those trying to enter
must be responsible for determining who does, and it cannot be postponed indefinately.

+ Bounded Waiting. If P(i) makes a request to enter a critical section, there must be bound
on the number of processes that enter before P(i).

10

Iwo Process Approach #1.

P(1):
for (;;) {
* Suppose we have two processes (P(0) and P(1)). while (turn != 1i);

Assume thatiis 0 or 1 and thatj = /i. EE;?E&\} | section

outside code

+ Keep a variable, turn, that determines which process should enter. }
What happens?

= There is mutual exclusion.
* We have bounded waiting.

+ But there is no guarantee of progress.
If turn == 0, but only P(1) wants to enter, it must wait until P(0) lets it, if ever.

11

Iwo Process Approach #2.

+ Suppose we have two processes (P(0) and P(1)).

Assume that i is 0 or 1 and that j = /i. P (i)
for (;;) {
+ Keep an array, flag[2], that keeps track of which process while (flagl[jl);
is in the critical section. flagli]l = 15
: : : critical section
+ We fail to achieve mutual exclusion. flag[i] = O:
Time 0: P(0) finds flag[1] is 0. P(1) finds flag[0] is O. outside code
Time 1: P(0) sets flag[0] =1 and P(1) sets flag[1] to 1.]

Time 2: Both processes enter the critical section.

+ We have progress. No process has to wait for decisions by another process in outside code.
+* We might have bounded waiting. It depends on timing.

+ Observation: The approach depends on perfect timing to keep critical section protected.

Iwo Process Approach #5.

* Suppose we have two processes (P(0) and P(1)).

Assume that i is 0 or 1 and that j = /i. E:é:,):(.)
flag[i] = 1;
+« Keep an array, flag[2], that keeps track of which process while (flagl[jl);
: . : critical section
wants to be in the critical section. flag[i] = 0
+ Here, we have mutual exclusion. outside code
+* We have bounded waiting. }

+ But there is no guarantee of progress.
Both processes could want to enter the critical section at the same time. Loops infinitely.

+* Observation: An example of deadlock. No process moves forward without drastic intervention.

13

Iwo Process Approach #4.

+ Suppose we have two processes (P(0) and P(1)). 5 (1)
Assume that i is 0 or 1 and that j = /i. for (::) {
flag[i] = 1; // I want to go
+ Keep an array, flag[2], that keeps track of which process turn =73, // you go Tirst
wants to be in the critical section. We also keep track of turn. VC”IH l?cglggéﬂ Oi‘& turn == 3):
+ Here, we have mutual exclusion. flag[i] = O;
outside code
Notice the only thing holding back a process is the loop. U

+ We have progress.
Suppose P(i) is waiting for P(j) in c.s. As soon as process j leaves, i will enter.

+* We have bounded waiting.
P(i) could only held back once. After that, it takes a turn.

+ Observation: This is a working solution, but is not obvious. Protecting critical sections is hard.
14

More than two processes.

+ The critical section problem for more than two processes is a bit harder:
+ From the point-of-view of process P(i), there are several other processes, j.
+ The flag variable keeps track of several states: idle, want-in, and in-cs.
+ To enter:
+ Typically, flag[i] == idle.
+ When a process tries to enter, it sets its own flag to want-in.
+ Starting at P(turn), it cycles around, it searches for first process j with flag[j1 !=idle.
Eventually, j == 1.
“ Itsets flag[i] = 1n-cs.
+ It checks that it is the only process with flag[i] == in-cs.
+ If flaglturn] ==idleor turn == i, we set turn = i and enter. Otherwise, try again.
+ To leave:
+ We set turn to the next non-idle process, or turn+1. We set flag[i] = idle.

+ This approach achieves mutual exclusion, progress, and bounded waiting.

15

Solution #1 using Hardware.

* Suppose we have an atomic instruction int testAndSet(int* target) that...

+ Temporarily saves the value stored at target.
* Sets the target memory value to 1.

+ Returns the saved, prior value of the target memory location.

+ Because it’s atomic, no other instruction
has access to target during this read&write operation.

+* Now the critical section problem is pretty simple.
Declare a global integer, 1ock, initially 6.

P(1):
for (;;) {
while (testAndSet(lock));
critical section
lock = 0;
outside code

16

Solution #2 using Hardware.

* Suppose we have an atomic instruction void swap(int *a, int *b) that...

* Sets a temporary to the value at location a.
+ Sets the location a to the value at location b.
+ Sets the location b to the value in temporary.
* Again, because it’s atomic, no other instruction
has access to target during this swapping operation.

+* Now the critical section problem is easy:
Declare a global integer, 10ck, initially 6, and a local

integer, key.

P(1):

for (;;)
Key =
do {

swap(lock, key

} while (key ==
critical section
lock = 0;
outside code

{
1;

)
1);

17

Solution #5 using Hardware.

* Suppose we have an atomic instruction int compareAndSwap(int *a, int b, int c) that...
+* Compares *a and b. It returns 1 (failure) if they differ.

= QOtherwise, it sets *a, to c.
= We built this so it’s atomic, no other instruction
has access to target during this swapping operation.

+* Now the critical section problem is easy:

Declare a global integer, 10ck, initially 6, and a local
integer, key.

P(1):
for (;;) {
while (compareAndSwap(lock,0,1));
critical section
lock = 0;
outside code

18

