
April 4, 2022

Computer Science 432 — Lecture 12 — Duane Bailey

Critical Section Protection (Locks, Continued)



Announcements

✤ Today, in lab, review of Lab 5 solution 

✤ Small Group Meetings, Microscopy Lab, Hopper Science, Ground Floor.   
Optional, but: why not? 

✤ O/S Conference topic contracts available.  Return by Wednesday, April 6.  Happy to discuss. 

✤ Updated syllabus, on-line. 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Critical Sections

✤ There is concurrency in xv6.  For example, we have three processors.
✤ Sometimes you’re interested in exclusively executing sections of code that are critical. 

Examples:
✤ Modifying the free list in the kernel page allocator.
✤ Modifying the struct proc structure in proc.c

✤ One approach to managing access to critical sections is the use of locks.
✤ Failure to appropriately manage access to critical sections could lead to:

✤ A race condition.
✤ Deadlock.
✤ Livelock.
✤ Starvation.

✤ Today, we’ll look at lock design.

3



Sharing Memory Between Processors

✤ The memory in xv6 is shared among all cpu’s/processors:
✤ Every processor can see all of memory.
✤ Every processor can execute the kernel.
✤ Processes can freely move between processors, over time.

✤ RISC-V has a number of instructions that support atomic access to memory:
✤ Atomic operators, “AMOs”.
✤ Load-reserved, store-conditional operators, “LR/SC”.
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Atomicity Operators

✤ By definition, the atomicity operators:
✤ Are complex.  You might attempt to do the same things with 2 or more instructions.
✤ Access memory.  Since internal state of the CPU is not shared, the only concern is memory.
✤ Guaranteed atomicity.  Concurrent instructions that involve AMOs guarantee the outcome is 

the same as executing the AMO before or after the other instructions.
✤ In short: the AMOs act like operations that happen directly in memory.

✤ Example: amoswap  rd, rs1, rs2    (Similar to:   csrrw   rd, rs1, rs2, but involving memory.)
✤ rd is assigned value at memory pointed to bey rs1.
✤ memory at rs1 gets value in rs2. 

✤ AMO guarantees require consistency protocols in the cache.
✤ L1$ and L2$ are dedicated to the CPU.
✤ L3$ is shared.  This level of cache is responsible for managing atomic access to memory.
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Load-Reserved/Store-Conditional

✤ The load-reserved (LR) and store-conditional (SC) operations work together:
✤ LR loads a value from memory location and places a “reservation” on that address
✤ SC stores a value to a memory location, but only if there is a reservation there.
✤ Regular loads and stores clear the reservation at their addresses.
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The Atomicity Axiom



The Progress Axiom



Implementing Compare-and-Swap with LR/SC

✤ An example atomic 
operation, built with  
LR/SC.

✤ compareAndSwap(a0,a1,a2) 
checks to see if *a0 == a1 
and, if so, sets *a0 = a2 and 
returns 0 (success). 
Otherwise, returns 1.



Managing Critical Sections

✤ Suppose we have a number of processes, P(i), each sharing  
a critical section of code that must be exclusively executed  
by at most one process. 

✤ Three properties are required for successful sharing of critical code:
✤ Mutual Exclusion.  If process P(i) is in the critical section, no other process can be there too. 

✤ Progress.  If no process is in the critical section, and some wish to, those trying to enter 
must be responsible for determining who does, and it cannot be postponed indefinately. 

✤ Bounded Waiting.  If P(i) makes a request to enter a critical section, there must be bound 
on the number of processes that enter before P(i).
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P(i): 
for (;;) { 
   { entry code}

   critical section

   { exit code }

   outside code

}



Two Process Approach #1.

✤ Suppose we have two processes (P(0) and P(1)). 
Assume that i is 0 or 1 and that j = !i. 

✤ Keep a variable, turn, that determines which process should enter. 
What happens? 

✤ There is mutual exclusion.
✤ We have bounded waiting. 

✤ But there is no guarantee of progress.   
If turn == 0, but only P(1) wants to enter, it must wait until P(0) lets it, if ever.
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P(i): 
for (;;) { 
   while (turn != i);

   critical section

   turn = j;

   outside code

}



Two Process Approach #2.

✤ Suppose we have two processes (P(0) and P(1)). 
Assume that i is 0 or 1 and that j = !i. 

✤ Keep an array, flag[2], that keeps track of which process  
is in the critical section.
✤ We fail to achieve mutual exclusion. 

Time 0: P(0) finds flag[1] is 0.  P(1) finds flag[0] is 0. 
Time 1: P(0) sets flag[0] = 1 and P(1) sets flag[1] to 1. 
Time 2: Both processes enter the critical section. 

✤ We have progress.  No process has to wait for decisions by another process in outside code.
✤ We might have bounded waiting.  It depends on timing. 

✤ Observation: The approach depends on perfect timing to keep critical section protected.
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P(i): 
for (;;) {

   while (flag[j]);

   flag[i] = 1;

   critical section

   flag[i] = 0;

   outside code

}



Two Process Approach #3.

✤ Suppose we have two processes (P(0) and P(1)). 
Assume that i is 0 or 1 and that j = !i. 

✤ Keep an array, flag[2], that keeps track of which process  
wants to be in the critical section.
✤ Here, we have mutual exclusion.
✤ We have bounded waiting. 

✤ But there is no guarantee of progress.   
Both processes could want to enter the critical section at the same time.  Loops infinitely.

✤ Observation: An example of deadlock. No process moves forward without drastic intervention.
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P(i): 
for (;;) { 
   flag[i] = 1;

   while (flag[j]);

   critical section

   flag[i] = 0;

   outside code

}



Two Process Approach #4.

✤ Suppose we have two processes (P(0) and P(1)). 
Assume that i is 0 or 1 and that j = !i. 

✤ Keep an array, flag[2], that keeps track of which process  
wants to be in the critical section.  We also keep track of turn.
✤ Here, we have mutual exclusion. 

 
Notice the only thing holding back a process is the loop.

✤ We have progress.   
Suppose P(i) is waiting for P(j) in c.s.  As soon as process j leaves, i will enter.

✤ We have bounded waiting. 
P(i) could only held back once.  After that, it takes a turn.

✤ Observation: This is a working solution, but is not obvious.  Protecting critical sections is hard.
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P(i): 
for (;;) { 
   flag[i] = 1; // I want to go

   turn = j;    // you go first

   while (flag[j] && turn == j);

   critical section

   flag[i] = 0;

   outside code

}



More than two processes.

✤ The critical section problem for more than two processes is a bit harder:
✤ From the point-of-view of process P(i), there are several other processes, j.
✤ The flag variable keeps track of several states: idle, want-in, and in-cs.
✤ To enter:

✤ Typically, flag[i] == idle.
✤ When a process tries to enter, it sets its own flag to want-in.
✤ Starting at P(turn), it cycles around, it searches for first process j with flag[j] != idle. 

Eventually, j == i.
✤ It sets flag[i] = in-cs.
✤ It checks that it is the only process with flag[i] == in-cs.
✤ If flag[turn] == idle or turn == i, we set turn = i and enter.  Otherwise, try again.

✤ To leave:
✤ We set turn to the next non-idle process, or turn+1.  We set flag[i] = idle. 

✤ This approach achieves mutual exclusion, progress, and bounded waiting.
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Solution #1 using Hardware.

✤ Suppose we have an atomic instruction int testAndSet(int* target) that…
✤ Temporarily saves the value stored at target.
✤ Sets the target memory value to 1.
✤ Returns the saved, prior value of the target memory location.

✤ Because it’s atomic, no other instruction  
has access to target during this read&write operation.

✤ Now the critical section problem is pretty simple. 
Declare a global integer, lock, initially 0.
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P(i): 
for (;;) {

   while (testAndSet(lock));

   critical section

   lock = 0;

   outside code

}



Solution #2 using Hardware.

✤ Suppose we have an atomic instruction void swap(int *a, int *b) that…
✤ Sets a temporary to the value at location a.
✤ Sets the location a to the value at location b.
✤ Sets the location b to the value in temporary.

✤ Again, because it’s atomic, no other instruction  
has access to target during this swapping operation.

✤ Now the critical section problem is easy: 
Declare a global integer, lock, initially 0, and a local 
integer, key.
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P(i): 
for (;;) {

   key = 1;

   do {

     swap(lock, key);

   } while (key == 1);

   critical section

   lock = 0;

   outside code

}



Solution #3 using Hardware.

✤ Suppose we have an atomic instruction int compareAndSwap(int *a, int b, int c) that…
✤ Compares *a and b.  It returns 1 (failure) if they differ.
✤ Otherwise, it sets *a, to c.

✤ We built this so it’s atomic, no other instruction  
has access to target during this swapping operation.

✤ Now the critical section problem is easy: 
Declare a global integer, lock, initially 0, and a local 
integer, key.
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P(i): 
for (;;) {

   while (compareAndSwap(lock,0,1));

   critical section

   lock = 0;

   outside code

}


