Introduction to l.ocks

Computer Science 432 — Lecture 11 — Duane Bailey

March 16, 2022

Announcements

+ Work continues on Lab 5, the COW optimization. Due on Friday.

+* Small group D will meet tomorrow, at the usual time. Topic: Lab 3.

+ Office Hours (this week, only): W1-4, F9-10:30

+ /S Conference topic contracts available. Return by Wednesday, April 6. Happy to discuss.

* April 6/7: SEM Microscope lab during small group meetings (optional, but: really?).

From Monday:) Timer Interrupt Handling

* Scratch area set off for machine-mode interrupts in start() (kernel/start.c):
+ Saves only a few registers
* Sets the machine interrupt vector to timervec (kernel/kernelvec.c)

+ Periodically, a timer goes off, reminding the machine to swap tasks.
+ Interrupts are machine-level.
* Very simple approach
+ Schedule another timer event
+ Raise a software interrupt (landing in trap.c’s devintr).
+ Allows kernel to carefully control scheduling, through yield()

Critical Sections

O

%

There is concurrency in xv6. For example, we have three processors.
Sometimes you're interested in exclusively executing sections of code that are critical.
Examples:

+* Modifying the free list in the kernel page allocator.

+* Modifying the struct proc structure in proc.c

One approach to managing access to critical sections is the use of locks.
Failure to appropriately manage access to critical sections could lead to:
+ Arace condition.

+ Deadlock.

+ Livelock.

+ Starvation.

Today, we’ll look at lock design.

Sharing Memory Between Processors

* The memory in xv6 is shared among all cpu’s/processors:
+ Every processor can see all of memory.
+ Every processor can execute the kernel.
+ Processes can freely move between processors, over time.

+ RISC-V has a number of instructions that support atomic access to memory:
* Atomic operators, “AMOs”.
+ Load-reserved, store-conditional operators, “LR/SC”.

Atomicity Operators

+ By definition, the atomicity operators:
+* Are complex. You might attempt to do the same things with 2 or more instructions.
+* Access memory. Since internal state of the CPU is not shared, the only concern is memory.
+ Guaranteed atomicity. Concurrent instructions that involve AMOs guarantee the outcome is
the same as executing the AMO before or after the other instructions.
+ In short: the AMOs act like operations that happen directly in memory:.

+* Example: amoswap rd, rs1, rs2 (Similar to: csrrw rd, rsl, rs2, but involving memory.)
+ rd is assigned value at memory pointed to bey rs].
* memory at rsl gets value in rs2.

+* AMO guarantees require consistency protocols in the cache.
+ L1% and L2$ are dedicated to the CPU.
+ L3% is shared. This level of cache is responsible for managing atomic access to memory.

l.oad-Reserved/Store-Conditional

* The load-reserved (LR) and store-conditional (SC) operations work together:
* LR loads a value from memory location and places a “reservation” on that address
+ SC stores a value to a memory location, but only if there is a reservation there.
+ Regular loads and stores clear the reservation at their addresses.

The Atomieity Axiom

Volume I: RISC-V Unprivileged ISA V20191213

A.3.3 Atomicity Axiom

Atomicity Axiom (for Aligned Atomics): If » and w are paired load and
store operations generated by aligned LR and SC instructions in a hart

h, s is a store to byte z, and r returns a value written by s, then s must
precede w in the global memory order, and there can be no store from

a hart other than h to byte x following s and preceding w in the global
memory order.

T'he Progress Axiom

A.3.4 Progress Axiom

Progress Axiom: No memory operation may be preceded in the global
memory order by an infinite sequence of other memory operations.

Implementing Compare-and-Swap with LLR/SC

a0 holds address of memory location
al holds expected value
a2 holds desired value
a0 holds return value, 0 if successful, '0 otherwise
* An example atomic cas:
operation, built with 1r.w t0, (a0) # Load original value.
LR/SC. bne t0, al, fz(ail) # Doesn’t match, so fail.
sc.w t0, a2, (a0l # Try to update.
N compareAndSw?p(aQ,al,aZ) bnez t0, cas # Retry if store-conditional failed.
checks to see if *a® == al 1i a0, O # Set return to success.
and, if so, sets *a® = a2 and jr ra # Return.
returns 0 (success). fail:
Otherwise, returns 1. 1i a0, 1 # Set return to failure.
jr ra # Return.

Figure 8.1: Sample code for compare-and-swap function using LR/SC.

