
March 16, 2022

Computer Science 432 — Lecture 11 — Duane Bailey

Introduction to Locks

Announcements

✤ Work continues on Lab 5, the COW optimization. Due on Friday. 

✤ Small group D will meet tomorrow, at the usual time. Topic: Lab 3. 

✤ Office Hours (this week, only): W1-4, F9-10:30 

✤ O/S Conference topic contracts available. Return by Wednesday, April 6. Happy to discuss. 

✤ April 6/7: SEM Microscope lab during small group meetings (optional, but: really?).

2

(From Monday:) Timer Interrupt Handling

✤ Scratch area set off for machine-mode interrupts in start() (kernel/start.c):
✤ Saves only a few registers
✤ Sets the machine interrupt vector to timervec (kernel/kernelvec.c) 

✤ Periodically, a timer goes off, reminding the machine to swap tasks.
✤ Interrupts are machine-level.
✤ Very simple approach

✤ Schedule another timer event
✤ Raise a software interrupt (landing in trap.c’s devintr).

✤ Allows kernel to carefully control scheduling, through yield()

3

Critical Sections

✤ There is concurrency in xv6. For example, we have three processors.
✤ Sometimes you’re interested in exclusively executing sections of code that are critical. 

Examples:
✤ Modifying the free list in the kernel page allocator.
✤ Modifying the struct proc structure in proc.c

✤ One approach to managing access to critical sections is the use of locks.
✤ Failure to appropriately manage access to critical sections could lead to:

✤ A race condition.
✤ Deadlock.
✤ Livelock.
✤ Starvation.

✤ Today, we’ll look at lock design.

4

Sharing Memory Between Processors

✤ The memory in xv6 is shared among all cpu’s/processors:
✤ Every processor can see all of memory.
✤ Every processor can execute the kernel.
✤ Processes can freely move between processors, over time.

✤ RISC-V has a number of instructions that support atomic access to memory:
✤ Atomic operators, “AMOs”.
✤ Load-reserved, store-conditional operators, “LR/SC”.

5

Atomicity Operators

✤ By definition, the atomicity operators:
✤ Are complex. You might attempt to do the same things with 2 or more instructions.
✤ Access memory. Since internal state of the CPU is not shared, the only concern is memory.
✤ Guaranteed atomicity. Concurrent instructions that involve AMOs guarantee the outcome is

the same as executing the AMO before or after the other instructions.
✤ In short: the AMOs act like operations that happen directly in memory.

✤ Example: amoswap rd, rs1, rs2 (Similar to: csrrw rd, rs1, rs2, but involving memory.)
✤ rd is assigned value at memory pointed to bey rs1.
✤ memory at rs1 gets value in rs2. 

✤ AMO guarantees require consistency protocols in the cache.
✤ L1$ and L2$ are dedicated to the CPU.
✤ L3$ is shared. This level of cache is responsible for managing atomic access to memory.

6

Load-Reserved/Store-Conditional

✤ The load-reserved (LR) and store-conditional (SC) operations work together:
✤ LR loads a value from memory location and places a “reservation” on that address
✤ SC stores a value to a memory location, but only if there is a reservation there.
✤ Regular loads and stores clear the reservation at their addresses.

7

The Atomicity Axiom

The Progress Axiom

Implementing Compare-and-Swap with LR/SC

✤ An example atomic
operation, built with  
LR/SC.

✤ compareAndSwap(a0,a1,a2) 
checks to see if *a0 == a1 
and, if so, sets *a0 = a2 and 
returns 0 (success). 
Otherwise, returns 1.

