Interrupt Handling & Device Drivers

Computer Science 432 — Lecture 10 — Duane Bailey

March 7, 2022



Announcements

+ Work continues on Lab 5, the COW optimization. Due on Friday.
+ Small group D will meet at the usual time. Topic: Lab 3.

+ Office Hours (this week, only): M1-2, T1-3, W1-4, F9-10:30

+ /S Conference topic contracts out on Wednesday.

+ Early April: SEM Microscope lab during small group meetings (optional)



Interrupt Handling

+ Recall: One type of trap is an interrupt, an asynchronous request
“ from a device, or
+ from software (e.g. from the timer unit)

* Device interrupts are dispatched through devintr, called from
* usertrap() through uservec if user mode was interrupted, or
* kerneltrap() through kernelvec if supervisor mode was interrupted, or
* (or...through timervec if timer is involved; details later)

+ Devices are identified by their IRQ (interrupt request) id’s:
+ e.g. UARTO has IRQ 10



Device Drivers

+ Device drivers are modules that manage the interaction between devices and the O/S
“ The top half of the driver is the interface with the operating system, accessed by the kernel
+ Is called at convenience of the kernel.
+ Manages device-specific resources
* The bottom half of the driver quickly manages the device at the time of interrupt
+ Could happen in any context
+ Lightweight design



Example: The Console Driver

* The console is the device that supports direct keyboard and display interactions with the user
through a serial port.
+ Interfaces with a traditional UART (universal asynchronous resceiver-transmitter).
A “16550” chip containing an internal FIFO of characters
* Supports serial, full-duplex (bi-directional) transmission of bits over “twisted pair” (RS232).
+* Communication with UART appears through memory mapped registers (see kernel/
memlayout.h and kernel/uart.c)

+ Gathers lines of input with minimal editing (backspace, EOF, newline, “u, *p)



UART Block Diagram

XTAL1 BRG Transmitter TX
XTAL2
I Receiver RX
INT Interrupt
RTS#
16550 CTS#
CPU UART Modem DTR#
Interface Registers | /10 DSR#
Signals CD#
RI#

Max Linear



Primary 16500 UART Registers

+ The UART contains several registers that are of interest to the console driver:
* I1ER—the interrupt identification register—controls the interrupt generation
+« writing bits in this register activate/ deactivate interrupts for receiving & transmission

* LSR—the line status register—keeps track of the state of the UART
+ bits within the register identify UART state: ready for read, etc.

* RHR—the receive holding register—the dequeue end of the receive FIFO
+ if this register is read, the character is dequeued from the FIFO

* THR—the transmit holding register—the enqueue end of the transmit FIFO
+ if this register is written, the character will eventually be transmitted



Address | Register Name Read/Write Register Function Comment
A2-A0

000 DLL - Divisor LSB Write-Only Divisor (LSB) for BRG LCR bit-7 =1
001 DLM - Divisor MSB Read-Only Divisor (MSB) for BRG LCR bit-7 =1
000 THR - Transmit Holding Register Write-Only Loading data into TX FIFO LCR bit-7 =0
000 RHR - Receive Holding Register Read-Only Unloading data from RX FIFO LCR bit-7 =0
001 IER — Interrupt Enable Register Read/Write Enable interrupts
010 FCR - FIFO Control Register Write-Only FIFO enable and reset
010 ISR — Interrupt Status Register Read-Only Status of highest priority interrupt
011 LCR - Line Control Register Read/Write Word length, stop bits, parity select,

send break, select divisor registers
100 MCR - Modem Control Register Read/Write RTS# and DTR# output control

Interrupt output enable
Internal Loopback enable
101 LSR - Line Status Register Read-Only RX Errors/Status
TX Status

110 MSR - Modem Status Register Read-Only Modem Input Status
111 SPR - Scratch Pad Register Read/Write General Purpose Register ‘m

\f"i,‘
V4 - N Powenng Connect:v:ty

Max Linear



Table 5. Description of Internal Register Bits

Internal Register Bit # Access Description
Receive Buffer Register (0x00) 7:0 R Holds received data
Transmitter Holding Register (0x00) 7:0 W Holds data to be transmitted
74 RW Unimplemented
3 RW ‘1’ enables Modem Status Interrupt
Interrupt Enable Register(0x01) 2 RW ‘1’ enables Receiver Line Status Interrupt
1 RW ‘1’ enables Transmitter Holding Register Empty Interrupt
0 RW ‘1’ enables Received Data Available Interrupt
7:3 R Unimplemented
‘001’ None
‘110’ Receiver Line Status Interrupt
Interrupt Identification Register (0x02) 5:0 R ‘100’ Received data available

‘010’ Transmitter Holding Register Empty
‘000’ Modem Status Interrupt
Refer to Table 3 for more details about |IR

Lattice Semiconductor



Internal Register Bit # Access Description
7 R Logic ‘0’
6 = ‘1" indicates Transmitter FIFO and Transmitter Shift Register
are both empty
S R 1" indicates Transmitter Holding Register empty
4 R 1’ indicates break condition
Line Status Register 3 o Framing Error Indicator
1’ indicates received character did not have a valid stop bit
5 = Parity Error Indicator
"1’ indicates received character did not have a correct parity
’ = Overrun Error Indicator
‘1’ occurs when RCVR FIFO is full
0 R 1" indicates Receiver Data ready

Lattice Semiconductor




Console Overview

* The console driver code is found in kernel/console.c
* consoleinit—initializes the UART to generate two different interrupts:

+ receive interrupt: whenever a character is received by the UART input FIFO.

* a transmit complete interrupt: whenever a character is successfully sent from output FIFO

11



Console Reading

+ Bottom Half: Lowest-level receive interrupt managed by uartintr() (kernel/uart.c)
* hands off characters from UART to consoleintr ()
“ consoleintr() performs basic interpretation of editing.
* wakes any waiting readers on newline

+ Top half: Input from the console:
* triggered by a read () system call.
handled by consoleread()
reads from the internal buffer, cons.buf.
returns only when an entire line is read
sleeps, otherwise, to be woken by consoleintr ()

O S o



Console Writing

+ Bottom Half: Lowest-level transmit complete interrupt managed by uartintr () (kernel/uart.c)
+ calls uartstart () to have UART start transmitting next character

+ Top half: Output to the console:
* triggered by a write () system call.
+ handled by uartputc() (kernel/uart.c).
+ writes to the internal buffer, uart tx buf.
+ waits only if the buffer is full

13



Supporting Concurrency

* Some important things to note:
* There is only one console device.
+ Buffers are used to communicate between bottom and top of the console drivers.
+* Locks (we’ll see soon) are necessary to maintain critical structures.

+ Interrupt handling may happen in any context: in any process or the kernel.

14



Timer Interrupt Handling

* Scratch area set off for machine-mode interrupts in start() (kernel/start.c):
+ Saves only a few registers
* Sets the machine interrupt vector to timervec (kernel/kernelvec.c)

+ Periodically, a timer goes off, reminding the machine to swap tasks.
+ Interrupts are machine-level.
* Very simple approach
+ Schedule another timer event
+ Raise a software interrupt (landing in trap.c’s devintr).
+ Allows kernel to carefully control scheduling, through yield()

15



