
March 7, 2022

Computer Science 432 — Lecture 10 — Duane Bailey

Interrupt Handling & Device Drivers

Announcements

✤ Work continues on Lab 5, the COW optimization. Due on Friday.

✤ Small group D will meet at the usual time. Topic: Lab 3.

✤ Office Hours (this week, only): M1-2, T1-3, W1-4, F9-10:30

✤ O/S Conference topic contracts out on Wednesday.

✤ Early April: SEM Microscope lab during small group meetings (optional)

2

Interrupt Handling

✤ Recall: One type of trap is an interrupt, an asynchronous request
✤ from a device, or
✤ from software (e.g. from the timer unit)

✤ Device interrupts are dispatched through devintr, called from
✤ usertrap() through uservec if user mode was interrupted, or
✤ kerneltrap() through kernelvec if supervisor mode was interrupted, or
✤ (or…through timervec if timer is involved; details later)

✤ Devices are identified by their IRQ (interrupt request) id’s:
✤ e.g. UART0 has IRQ 10

3

Device Drivers

✤ Device drivers are modules that manage the interaction between devices and the O/S
✤ The top half of the driver is the interface with the operating system, accessed by the kernel

✤ Is called at convenience of the kernel.
✤ Manages device-specific resources

✤ The bottom half of the driver quickly manages the device at the time of interrupt
✤ Could happen in any context
✤ Lightweight design

4

Example: The Console Driver

✤ The console is the device that supports direct keyboard and display interactions with the user
through a serial port.
✤ Interfaces with a traditional UART (universal asynchronous resceiver-transmitter).

A “16550” chip containing an internal FIFO of characters
✤ Supports serial, full-duplex (bi-directional) transmission of bits over “twisted pair” (RS232).
✤ Communication with UART appears through memory mapped registers (see kernel/

memlayout.h and kernel/uart.c)

✤ Gathers lines of input with minimal editing (backspace, EOF, newline, ^u, ^p)

5

Max Linear

Primary 16550 UART Registers

✤ The UART contains several registers that are of interest to the console driver:
✤ IER—the interrupt identification register—controls the interrupt generation

✤ writing bits in this register activate/deactivate interrupts for receiving & transmission

✤ LSR—the line status register—keeps track of the state of the UART
✤ bits within the register identify UART state: ready for read, etc.

✤ RHR—the receive holding register—the dequeue end of the receive FIFO
✤ if this register is read, the character is dequeued from the FIFO

✤ THR—the transmit holding register—the enqueue end of the transmit FIFO
✤ if this register is written, the character will eventually be transmitted

7

Max Linear

Lattice Semiconductor

Lattice Semiconductor

Console Overview

✤ The console driver code is found in kernel/console.c
✤ consoleinit—initializes the UART to generate two different interrupts:

✤ receive interrupt: whenever a character is received by the UART input FIFO.

✤ a transmit complete interrupt: whenever a character is successfully sent from output FIFO

11

Console Reading

✤ Bottom Half: Lowest-level receive interrupt managed by uartintr() (kernel/uart.c)
✤ hands off characters from UART to consoleintr()
✤ consoleintr() performs basic interpretation of editing.
✤ wakes any waiting readers on newline

✤ Top half: Input from the console:
✤ triggered by a read() system call.
✤ handled by consoleread()
✤ reads from the internal buffer, cons.buf.
✤ returns only when an entire line is read
✤ sleeps, otherwise, to be woken by consoleintr()

12

Console Writing

✤ Bottom Half: Lowest-level transmit complete interrupt managed by uartintr() (kernel/uart.c)
✤ calls uartstart() to have UART start transmitting next character

✤ Top half: Output to the console:
✤ triggered by a write() system call.
✤ handled by uartputc() (kernel/uart.c).
✤ writes to the internal buffer, uart_tx_buf.
✤ waits only if the buffer is full

13

Supporting Concurrency

✤ Some important things to note:

✤ There is only one console device.

✤ Buffers are used to communicate between bottom and top of the console drivers.

✤ Locks (we’ll see soon) are necessary to maintain critical structures.

✤ Interrupt handling may happen in any context: in any process or the kernel.

14

Timer Interrupt Handling

✤ Scratch area set off for machine-mode interrupts in start() (kernel/start.c):
✤ Saves only a few registers
✤ Sets the machine interrupt vector to timervec (kernel/kernelvec.c)

✤ Periodically, a timer goes off, reminding the machine to swap tasks.
✤ Interrupts are machine-level.
✤ Very simple approach

✤ Schedule another timer event
✤ Raise a software interrupt (landing in trap.c’s devintr).

✤ Allows kernel to carefully control scheduling, through yield()

15

