T'he Page Table, Our Faulty Friend

Computer Science 432 — Lecture 9 — Duane Bailey

March 2, 2022

Announcements

+ Lab 4 (Page Tables) is out.

* You caught me. 1 (unsuccessfully) edited the page table dump in the lab handout.
Revised version on the web site.

+ Small group discussions about Lab 3, today and tomorrow.
* Next two weeks: follow calendar:

+ No small groups next week (but yes to the week after)
+ Lab meeting next week, (but no to the week after)

Notes on Page Table Permission Bits (for Petros

* Recall: there are 10 bits reserved for metadata associated with virtual address translations:
* PTE_V — this is a valid entry. If other bits are zero, this is a pointer to another table node.
PTE_R, _W, _X — read /write/execute access to page. (PTE_W requires PTE_R)
PTE_U — (1) this page may be accessed in User mode — but not Supervisor, (0) vise versa
°TE_G — global definition
PTE_A — this page was read accessed.

PTE_D — this page was write accessed.
+ bits 8 & 9 — reserved for O/S use.

o o e P

+ Typically, PTE_U is set in process page tables, mainly used in User mode.

+ Typically, PTE_U is cleared in kernel page tables, exclusively used in Supervisor mode.

+ Thus: you can control access using at least two page table entries.

Interrupt | Exception Code | Description

1 0 | User software interrupt
° 1 1 | Supervisor software interrupt
andling rage raults ! 23 | Reseroed
1 4 | User timer interrupt
1 5 | Supervisor timer interrupt
1 6-7 | Reserved
1 8 | User external interrupt
+ Recall that exceptions—including access violations i >18 i’z“per‘“zor external interrupt
> eserve
—are handled by the tr dp system. 0 0 | Instruction address misaligned
+ Ditferent types of traps—system calls, 0 1 | Instruction access fault
exceptions, and interrupts are routed in 0 2| lllegal instruction
0 3 | Breakpoint
usertrap(). (See trap.c) 0 4 | Reserved
This routine is where page faults and their 0 5 | Load access fault
- 0 6 | AMO address misaligned
pTOCESSES 5O to die. 0 7 | Store/AMO access fault
0 8 | Environment call
+ There are three types of page faults: 0 9-11 | Reserved

* Instruction-based faults (0 PTEX) ——T7707 15 tond pogo e
+ Load-based faults (no PTE R)

0 14 | Reserved
0 >16 | Reserved

+* We can route page fault handling based on cause.
Table 4.2: Supervisor cause register (scause) values after trap.

An optimization: Copy-on-Write (COW) Pages

* Motivation: The fork process makes a copy of all the pages of the parent, in the new child.
+ Fork calls uvmcopy. (See proc.c)
+ uvmcopy walks the page table, kalloc-ing and movmem-ing (See vm.c)
+ Every byte of the parent memory is copied...
* And then, typically, the child process is replaced by an exec (prog, args) system call.

+* How might we avoid copying the parent memory into the child?

+ Solution: Creating a copy of each page only if it is written.

Rough Outline of COW Optimizations

+ In fork, page tables are prepared:
+ The child gets a new page table,
but instead of referring to copies of physical pages
the child’s page tables share references with the parent
+ If these pages have read or execute access, everything is good!

+ If the pages are writable, the two processes may wish to diverge by writing different values
This 1s the main concern of Copy-on-Write optimizations:
+ The PTE W bit is cleared

* One of the O/S bits is used to represent: “Copy this page if written to.”

+* The O/S can’t inject itself directly in the writing process, but it can use page faults, indirectly.

ldentifying the Need to Copy: Store Faults

* When a COW-optimized process wants to write to memory:
* The write to virtual memory performs a translation through the table with no PTE_W bit
A store-based page fault (scause 15) occurs.
%+ The fault arrives in the usertrap() routine with
* scause CSR containing 15
sepc CSR containing the address of the instruction that tried a write
stval CSR containing the address that was the target of the write

« usertrap() could hand off to a routine that
+ makes a writable copy of the target page (kalloc, memcpy, set PTE_W),
unmaps the shared page from the process” page table,
replaces it with a mapping that targets the new writable copy,
returning from the trap returns the sepc, the instruction that failed will now go through.

O S

7

Reference Counting Shared COW Pages

+ The process of sharing process pages requires some changes to kernel allocation.
+ For each physical page, we track the number of page table entries that reference that page.
This reference count is set to 1 in kalloc ().
The reference count is incremented by 1 when we share a page reference.
Each time we call kfree () we decrement the reference count.
Only when the reference count is reduced to zero, does the page get returned to the free list.

D e

+ QObservation: writable pages will only have a reference count of 1.
+ QObservation: shared pages with reference count of 1 can be written to directly.

trampoline

An Optimization: Lazy Allocation trapframe

heap

* Lazy allocation allows processes to extend process
memory only when a page is actually accessed.
* Process memory is extended by calling sbrk ().
This services adds more pages to the heap. stack
+ Traditionally, that memory is allocated and
targeted by the page table mapping.

guard page |

data

text

trampoline

An Optimization: Lazy Allocation trapframe

heap

* Lazy allocation allows processes to extend process

memory only when a page is actually accessed.

* Process memory is extended by calling sbrk ().
This services adds more pages to the heap. stack

+ Traditionally, that memory is allocated and
targeted by the page table mapping.

+« With lazy allocation, the kernel keeps track of data
the size of the process” address space
but does not allocate or map that memory.

guard page |

text

trampoline

An Optimization: Lazy Allocation trapframe

heap

* Lazy allocation allows processes to extend process sd a®, mem |

memory only when a page is actually accessed.

* Process memory is extended by calling sbrk ().
This services adds more pages to the heap. stack

+ Traditionally, that memory is allocated and
targeted by the page table mapping.

+« With lazy allocation, the kernel keeps track of data
the size of the process” address space
but does not allocate or map that memory.

+ If a page fault occurs within the logical extent
of the process, that one page is allocated and
mapped and the instruction is restarted.

guard page |

text

Other optimizations: Paging Strategies

+ Optimization: Demand paging.
+ Traditionally all code and data pages are loaded into memory at the start.
+* Demand paging only loads code and data pages when they’re first referenced.

+ Optimization: Paging to secondary store.
+ Currently, all pages of the virtual address space are found somewhere in physical memory.
+* In a paging system, only a working set is kept in physical memory.
The rest is saved to backing store.
+* The model is to think of physical memory as a cache for the virtual image saved on disk.

12

