
March 2, 2022

Computer Science 432 — Lecture 9 — Duane Bailey

The Page Table, Our Faulty Friend

Announcements

✤ Lab 4 (Page Tables) is out.
✤ You caught me. I (unsuccessfully) edited the page table dump in the lab handout. 

Revised version on the web site.

✤ Small group discussions about Lab 3, today and tomorrow.

✤ Next two weeks: follow calendar:
✤ No small groups next week (but yes to the week after)
✤ Lab meeting next week, (but no to the week after)

2

Notes on Page Table Permission Bits (for Petros)

✤ Recall: there are 10 bits reserved for metadata associated with virtual address translations:
✤ PTE_V — this is a valid entry. If other bits are zero, this is a pointer to another table node.
✤ PTE_R, _W, _X — read/write/execute access to page. (PTE_W requires PTE_R)
✤ PTE_U — (1) this page may be accessed in User mode — but not Supervisor, (0) vise versa
✤ PTE_G — global definition
✤ PTE_A — this page was read accessed.
✤ PTE_D — this page was write accessed.
✤ bits 8 & 9 — reserved for O/S use.

✤ Typically, PTE_U is set in process page tables, mainly used in User mode.
✤ Typically, PTE_U is cleared in kernel page tables, exclusively used in Supervisor mode.
✤ Thus: you can control access using at least two page table entries.

3

Handling Page Faults

✤ Recall that exceptions—including access violations
—are handled by the trap system.
✤ Different types of traps—system calls,

exceptions, and interrupts are routed in
usertrap(). (See trap.c) 
This routine is where page faults and their
processes go to die.

✤ There are three types of page faults:
✤ Instruction-based faults (no PTE_X)
✤ Load-based faults (no PTE_R)
✤ Store-based faults (no PTE_W)

✤ We can route page fault handling based on cause.
4

An optimization: Copy-on-Write (COW) Pages

✤ Motivation: The fork process makes a copy of all the pages of the parent, in the new child.
✤ Fork calls uvmcopy. (See proc.c)
✤ uvmcopy walks the page table, kalloc-ing and movmem-ing (See vm.c)
✤ Every byte of the parent memory is copied…
✤ And then, typically, the child process is replaced by an exec(prog, args) system call.

✤ How might we avoid copying the parent memory into the child?

✤ Solution: Creating a copy of each page only if it is written.

5

Rough Outline of COW Optimizations

✤ In fork, page tables are prepared:
✤ The child gets a new page table,  

but instead of referring to copies of physical pages 
the child’s page tables share references with the parent

✤ If these pages have read or execute access, everything is good!
✤ If the pages are writable, the two processes may wish to diverge by writing different values 

This is the main concern of Copy-on-Write optimizations:
✤ The PTE_W bit is cleared
✤ One of the O/S bits is used to represent: “Copy this page if written to.”

✤ The O/S can’t inject itself directly in the writing process, but it can use page faults, indirectly.

6

Identifying the Need to Copy: Store Faults

✤ When a COW-optimized process wants to write to memory:
✤ The write to virtual memory performs a translation through the table with no PTE_W bit
✤ A store-based page fault (scause 15) occurs.

✤ The fault arrives in the usertrap() routine with
✤ scause CSR containing 15
✤ sepc CSR containing the address of the instruction that tried a write
✤ stval CSR containing the address that was the target of the write

✤ usertrap() could hand off to a routine that
✤ makes a writable copy of the target page (kalloc, memcpy, set PTE_W),
✤ unmaps the shared page from the process’ page table,
✤ replaces it with a mapping that targets the new writable copy,
✤ returning from the trap returns the sepc, the instruction that failed will now go through. 

7

Reference Counting Shared COW Pages

✤ The process of sharing process pages requires some changes to kernel allocation.
✤ For each physical page, we track the number of page table entries that reference that page.
✤ This reference count is set to 1 in kalloc().
✤ The reference count is incremented by 1 when we share a page reference.
✤ Each time we call kfree() we decrement the reference count.
✤ Only when the reference count is reduced to zero, does the page get returned to the free list.

✤ Observation: writable pages will only have a reference count of 1.
✤ Observation: shared pages with reference count of 1 can be written to directly.

8

An Optimization: Lazy Allocation

✤ Lazy allocation allows processes to extend process
memory only when a page is actually accessed.
✤ Process memory is extended by calling sbrk().

This services adds more pages to the heap.
✤ Traditionally, that memory is allocated and

targeted by the page table mapping. 
 
 
 
 
 

9

An Optimization: Lazy Allocation

✤ Lazy allocation allows processes to extend process
memory only when a page is actually accessed.
✤ Process memory is extended by calling sbrk().

This services adds more pages to the heap.
✤ Traditionally, that memory is allocated and

targeted by the page table mapping.
✤ With lazy allocation, the kernel keeps track of

the size of the process’ address space 
but does not allocate or map that memory. 
 
 

10

{

An Optimization: Lazy Allocation

✤ Lazy allocation allows processes to extend process
memory only when a page is actually accessed.
✤ Process memory is extended by calling sbrk().

This services adds more pages to the heap.
✤ Traditionally, that memory is allocated and

targeted by the page table mapping.
✤ With lazy allocation, the kernel keeps track of

the size of the process’ address space 
but does not allocate or map that memory.

✤ If a page fault occurs within the logical extent 
of the process, that one page is allocated and
mapped and the instruction is restarted.

11

sd a0, mem{

Other optimizations: Paging Strategies

✤ Optimization: Demand paging.
✤ Traditionally all code and data pages are loaded into memory at the start.
✤ Demand paging only loads code and data pages when they’re first referenced.

✤ Optimization: Paging to secondary store.
✤ Currently, all pages of the virtual address space are found somewhere in physical memory.
✤ In a paging system, only a working set is kept in physical memory.  

The rest is saved to backing store.
✤ The model is to think of physical memory as a cache for the virtual image saved on disk.

12

