
February 28, 2022

Traps: Syscalls, Exceptions & Interrupts
Computer Science 432 — Lecture 8 — Duane Bailey

Announcements

✤ Lab 3 (System Calls) due today.
✤ Questions?

✤ Lab 4 (Page Tables) in lab, today.

2

Traps: System Calls, Exceptions, and Interrupts

✤ There are three main times when we need to suspend the current thread of execution:
✤ When the user makes a system call. An example is the trace() call we implemented in lab 3.
✤ When the machine generates an exception. An example is division by 0.
✤ When an external agent is interested in registering an interrupt. Timers are an example.

✤ Every operating system (and operating system textbook) describes these events using different
terms. In this course, all of these are simply called traps. RISC-V routes all traps the same way.

3

xv6 Trap Handling Approach

✤ All traps in xv6 are handled by the kernel (in supervisor or machine mode):
✤ This greatly simplifies the process by having a single approach to interrupting processes.
✤ If the user wishes to handle an exceptional condition, we might arrange for the user to 

register a handler (or, vector) within the kernel. Still, the kernel would be the first in line.
✤ Most traps are handled in supervisor mode.
✤ Timer interrupts are quickly handled in machine mode (see kernelvec.S).  

This gives timer handling precedence.

4

The Trap Handling CSR Registers

✤ The RISC-V machine provides a number of CSR registers which aid in the trap handling process:
✤ stvec (“supervisor trap vector register”): the physical address of the (typically: assembly) code

that will handle traps.
✤ sepc (“supervisor exception program counter”): where the PC of the interrupted instruction

is saved. On return from the trap, this register is copied to the PC.
✤ scause (“supervisor cause register”): where RISC-V stores the cause of the exception (an

integer).
✤ sscratch (“supervisor scratch register”): a general purpose register used in context switching
✤ sstatus (“supervisor status register”): a register whose bits control the handling of exceptions

✤ The satp (“supervisor address translation and protection register”) is the physical address of the
page table.

5

The Trap Instruction Behavior

✤ When a trap occurs, the following steps are taken (if sstatus SIE bit is set):
1. Disable further interrupts: clear the SIE bit in the sstatus register.
2. Copy the PC to the sepc register.
3. Save the current mode (user or supervisor) in the SPP bit of the sstatus register.
4. Set the cause of the trap in scause.
5. Enter supervisor mode.
6. Copy stvec to PC (called vectoring)

✤ Note that the machine does not switch page  
tables. That requires special choreography.

6

The Trap Handling Algorithm

✤ Trap handling entry and exit:
✤ When a trap occurs, the machine essentially starts executing at routine pointed to by stvec.
✤ When an exception happens in user mode, this routine is uservec (in trampoline.S)
✤ uservec: saves the user’s registers and switches to the supervisor page table. It then calls

✤ usertrap: Set up kernel trap vector. Determine the cause of the trap and route it
appropriately by calling…
✤ syscall for system calls
✤ devintr for device interrupts
✤ kill the process for other exceptions.

✤ [Trap is processed.]
✤ usertrapret: Restore the user trap vector. Set up trapframe pointers. Then call…

✤ userret: Change to user page table. Restore user registers. Return to resume execution.

uservec: trampoline.S usertrap, usertrapret: trap.c userret: trampoline.S
7

System Causes

✤ Because all exception handling is routed
through one piece of code to dispatch/
route appropriately, the cause is an
important piece of information.

✤ Here, a “load page fault” due to null
pointer de-reference in, OMG, the kernel:

8

Trampoline &
Trapframe

9

✤ Important things to note:
✤ The TRAMPOLINE page appears at the

same virtual address in every process.
✤ User mode processes cannot execute

trampoline code; only after trap raises
mode to supervisor

✤ This allows trampoline code to swap
page tables without problems.

✤ Per-process trapframe supports
swapping of contexts between user
process and kernel.

Complexities in
System Calls

10

✤ Because the handling of traps swaps page
tables, system calls must work hard to
ensure secure copying of arguments in and
results out of code.
✤ Supervisor has access to process page

table pointer.
✤ Manually walking this page table with a

virtual address develops a physical address.
✤ BUT REMEMBER, any physical address

can be used as a virtual address in the
kernel; 
the mapping is trivial.

✤ The copy-in and copy-out code must be
very careful to identify and illegal
memory accesses it might make on
behalf of user code.

The Trap Handling Algorithm Within Kernel

✤ The handling of traps the originate in the kernel is similar. BUT:
✤ It uses a different trap vector (found in kernelvec.S).
✤ The page table does not have to be changed.
✤ Context is stored on the kernel stack, not in the trapframe.
✤ There is a similar nesting-dolls set of routines for calling and returning from the trap

handler.
✤ Exceptions that happen in the kernel cause the kernel to panic.

kernelvec: kernelvec.S kerneltrap: trap.c

✤ One particular type of exception is important to think about: page faults.
✤ Page faults are normal on real machines, so we must think carefully about how the O/S

should handle them.
✤ We’ll discuss much of this on Wednesday.

11

