Memory Management

Computer Science 432 — Lecture 7 — Duane Bailey
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Announcements

+ Chapter 4 (System Calls) is due on Monday.

+ Small group meetings today and tomorrow.
+ Tell me if you need me to re-pull Lab 2.

* Questions on Lab 3?



T'he Memory Model

+ Memory 1s simply a linear, contiguous arrangement of bytes in a store.
+ The store is typically “main memory” or “DRAM”. (DRAM is actually a technology.)
+ The offset from the beginning of the store is the “address”.
+ The store is typically byte-addressable. Every byte has a unique address.
+* We often think of these addresses as pointers.
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+ Although memory is byte-sized, machines and OSs may prefer to manipulate larger units.
+ E.g. The stack-pointer is guad-word aligned. Many reasons why this might be.
Stack pointers end in 4 binary zeros: ....0000.
+ E.g. Memory is often logically segmented into blocks or pages. 4K bytes =1 block.
Block pointers end in 12 binary zeros: ....0000 0000 0000

“ At the OS level, everything is all about pages. And why not?!



Virtual Memory Translation

+* Advanced, modern processors all reference memory through a system of virtual addresses.
+ Virtual addresses allows processes to act as if they’re using a large contiguous memory.
+ The virtual memory is typically larger than what is actually available in the machine.
+ Ideally, the virtual memory is fast.

* Memory management units.

+ Physical memory is a physical device, often sized differently, not contiguous. Slow.

* The memory management unit is a device adjacent to the processor that interfaces the two
models of memory:
+ Includes devices: caches (Li$), a page table walker, and a translation lookaside buffer (TLB).

(Note to Mom: “Studying TRANSLATION LOOKASIDE BUFFERS. Aren’t you proud?”)

+ Includes protocols: approaches to translation, cache coherency, and exception handling.

+ If successful, the complexity of this unit will rival that of the processor, itself.



Who, what, when, where, and how.

+ The processor ships out virtual addresses.
+* The memory—by definition—accepts only physical addresses.
+* The memory hierarchy must interface/translate between these warring parties...
+ Goal: Do not touch offsets within a page. Performance across a page should be uniform.
+ Goal: Replace the higher bits of the virtual address, the virtual page number, with a different
number of bits, representing a physical page number.
+ Goal: Find page number translations in the TLB while looking for the data in the L1%.

+ First level caches are virtually addressed, but physically tagged. Cache starts searching
for a virtual address, but verifies the tag against the higher bits of the co-translated
physical address. Higher level caches: “We're all physical.”

+ Goal: If TLB misses, “Walk the page table” (a Johnny Cash ditty?) and cache the translation.
+« Goal: If page table walking fails, get the OS to Just Fix the Problem. Page fault handling.



Storing a’lranslation: The Page Table Entry
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+ Somewhere, there’s a page table entry that solves your virtual page number translation problem
+ RISC-V PTE: takes up 64-bits (8-bytes) describing a single translation:
+* A 44-bit physical page number. It is the translation for the virtual page number bits that got
you here.
* Metadata: 10 status bits describing page entry (valid)
or the page itself (read, write, execute, user, dirty, et al.)

* A page table is simply a list of page table entries, indexed by virtual page number.
+ On RISC-V, virtual page numbers are 27-bits long.
+ Page table has up to 2?7 entries, taking 1Gb of memory to store.

Wowza! Yikes!



Common Solution: Hierarchical Page Table

+ QObservation: 1 block (4096 bytes) can store 512 64-bit values, indexed by a 9-bit address.
+* E.g. 64-bit page table entry
+ E.g. 64-bit pointer to another block (a pointer whose low 12 bits are zero!)

+ Observation: Virtual memory is often sparse, not contiguous.

+ Store the (sparse, non-contiguous) page table as a 3-level, 512-ary tree:
+ Leaf blocks of page table tree (all at bottom level) are collections of page table entries.
+ Interior blocks (two levels) are collections of lower level block pointers —physical addresses.
+ Blocks at each level are indexed by 9 bits from the virtual block address.

+ If any entry is zero, it’s not a usetful entry.
+* Only page table entries with the “valid bit” set (bit 0) actually store translations.



Common Solution: Hierarchical Page Table
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A Symbiotic Relationship

* Only the operating system can make a tree:
+ The page table is constructed by the OS:
+ As the machine boots, the kernel’s page table is built in kvminit (kernel/vm.c)
* As processes are constructed, page tables are built in proc_pagetable (kernel/proc.c)
+ Page tables are maintained by the OS:
+* Memory allocation leads to new virtual memory addresses for allocated physical page.
+ Sets PTE status bits: e.g. when loading a new executable.

+ The hardware uses the tree to form translations
+* The satp CSR register holds the physical address of the root block of the tree.
+ Hardware will (1) assume the tree is in memory and (2) will walk the tree to form the
translations. Ideally: everything’s in memory, and cached in L1$; done in 3 reads.
* Caches any translations (and metadata...like, uh, what?) in the TLB.



Failure 1s not an option.

Failure by the hardware to form a translation generates a page fault.
404: Page faults are not fun.

(Millions of instructions (and several chapters) later) the OS will Just Fix the Problem.
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xvb kernel memory mapping
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Rule 1: The kernel manages all of physical memory.
Rule 2: The kernel can always access physical memory using an identical virtual memory address.
+ Called direct addressing. Simplifies many things: e.g. user page table can be thought of as
translating user virtual addresses into kernel virtual addresses. Cool!
+ Only meaningful if the virtual page numbers are as long as physical page numbers.
Not true. But “practically true”.
Rule 3: Top page of virtual memory is a shared block of mode-switching code called the trampoline.
(Note to Mom: “Playing with TRAMPOLINES. Please pay health insurance.”) Also directly mapped!
[Huh: Several processes may be executing code in the kernel, from different cores.]
Rule 4: Kernel shares one block (the trap frame) with each process; writeable by trampoline.
Rule 5: Kernel has one block of stack for each process.
Rule 6: Kernel places guard pages between critical areas where rogue processes may fall.

Not Orwell: Break any of these rules sooner than build anything outright barbarous.
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Physical Addresses
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Figure 3.3: On the left, xv6’s kernel address space. RWX refer to PTE read, write, and execute
permissions. On the right, the RISC-V physical address space that xv6 expects to see.
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Physical Addresses
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Figure 3.3: On the left, xv6’s kernel address space. RWX refer to PTE read, write, and execute
permissions. On the right, the RISC-V physical address space that xv6 expects to see.
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xv0O userland
memory layout.

+ There is, effectively, no relationship
between virtual addresses for user
processes and their mapping to physical
memory. Allocation of process pages is
controlled by the kernel memory allocator

(kalloc).

+ The trampoline page (blue) is mapped
exactly like it is in the kernel. Why? The
page table changes in the middle of

trampoline execution.
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