The Monohithic xv6 Kernel & RISC-V ISA

Computer Science 432 — Lecture 5 — Duane Bailey

February 16, 2022

Announcements

+ Lab 2 (xv6) is currently out; due Monday before the next lab
* Small Group meetings for Lab 1 (mex) today and tomorrow (Knuth)
* No office hours on Friday:.

+ Please follow along with Syllabus: Read Chapter 3 for Monday.

Kernel Structure

+ We recall that the purpose of the kernel is:
+ Multiplexing: Fairly give all processes the same view of the machine
+ Isolation: Protect processes and the kernel from getting “wrecked” by problems & bugs
+ Interaction: Support the intentional interaction of processes

* There are choices to be made:

* Do we have a kernel? If no: similar to approach of embedded devices.
+ No overhead of kernel.
+ No protection or support, generally.

+* Do we have a monolithic kernel? An us-vs-them approach. Linux, many unix versions.
+ Kernel encapsulates all code that runs in supervisor mode.

* Do we have a microkernel? Mach and many derivatives, including XNU, Darwin, et al.
+ Kernel is very small, supporting message-passing among user-space resource controllers

3

Hardware Abstractions

+ Hardware components are provided as services.
+ Storage accessed through a file system using opaque/ abstract file descriptors.
+* CPU is shared through transparent context switching managed by a scheduler.
+* Memory is constructed using exec which works with a system of virtual memory.
+* Processes communicate through file descriptors

<+ Kernel in xv6: a monolithic kernel that balances convenience vs. isolation

Privilege Modes

+ RISC-V supports three execution privilege modes:
* Machine mode: a mode for booting and configuring machine.
+ Flat physical memory.
* No limit on instructions.
* xv6 uses this mode only during boot process.
* Supervisor mode: a mode for executing a monolithic kernel.
+ Virtual memory, with ability to change memory mapping.
* Access to privileged instructions.
+* xv6’s monolithic kernel runs, for the most part, in Supervisor Mode
* User mode: mode for user-written programs and process execution.
* Virtual, protected memory.
* Instructions limited.
+ Processes use this mode. Userland.

Moving Between Modes

+ Isolation is established by severely constraining movement between modes.
+ Generally, you can move into a more protected modes through a call mechanism
* A single instruction, ecall, controls access to Supervisor mode.
+* When supervisor mode is entered, memory layout is modified:
+ Kernel-specific mapping of virtual memory
+ Kernel-specific stack
* Any communicated values must be manually moved between userland and kernel.
+ Kernel validates call before fully entering into the kernel proper.
* When kernel is finished, it performs a sret to reverse the process
+ Main observation: Kernel must be able to do its work without the user noticing.

+ Similar approach in moving between supervisor and machine modes.

Kernel Organization

“+ Kernel is a collaboration of services

Most services have source & header

All kernel services run in Supervisor

No isolation of services within kernel
But: easier to communicate within kernel
Mistakes here cause total system failure

D e e o}

* Our goal: understand motivation for

decisions made in this code.

File Description

bio.c Disk block cache for the file system.
console.c Connect to the user keyboard and screen.
entry.S Very first boot instructions.

€Xec.C exec() system call.

file.c File descriptor support.

fs.c File system.

kalloc.c Physical page allocator.

kernelvec.S | Handle traps from kernel, and timer interrupts.
log.c File system logging and crash recovery.
main.c Control initialization of other modules during boot.
pipe.c Pipes.

plic.c RISC-V interrupt controller.

printf.c Formatted output to the console.

proc.c Processes and scheduling.

sleeplock.c | Locks that yield the CPU.

spinlock.c Locks that don’t yield the CPU.

start.c Early machine-mode boot code.

string.c C string and byte-array library.

swtch.S Thread switching.

syscall.c Dispatch system calls to handling function.
sysfile.c File-related system calls.

SySproc.c Process-related system calls.

trampoline.S

trap.c
uart.c

virtio_disk.c

vin.C

Assembly code to switch between user and kernel.

C code to handle and return from traps and interrupts.

Serial-port console device driver.
Disk device driver.
Manage page tables and address spaces.

Figure 2.2: Xv6 kernel source files.

MAXVA

trampoline
trapframe
Process Structure
; heap
* The main unit of isolation is the process
+ Processes represent a thread of execution; user stack
a locus of control user text
. . . and data
+ Have their own virtual memory mapping 0y
+ Dedicated user text (code) and data | |
+ Dedicated user stack (gl‘OWS down: note P osition) Figure 2.3: Layout of a process’s virtual address space
+ Dedicated heap (grows up; note position)
+ A dedicated “trapframe” — writeable area for transition between user & kernel
+ A shared “trampoline” — code used to transition between user & kernel

* In the kernel, a process is represented by a struct proc
+ This structure maintains resources dedicated to process: page table, state, stack, etc.

Booting and First Process

* Boot code:
+ Bootloader is stored in ROM. Loads kernel into memory at 0x8000 0000 (devices below)
+ Control transferred to kernel (at entry), in machine mode.

+ Kernel’s _entry:
+ Sets up a simple 4K stack (one per hardware thread or hart), jumps to C code, start.
+ This routine sets up initial page tables, initializes timer interrupts.
+ Sets registers to appear as though there had been a supervisor->machine mode call
“ “Returns” to main.

“+ Kernel’s main:
+ Initializes devices (eg. console)
+ From userinit routine, creates the initial process, init, with pid 1.

+ Initial process (userland!)
+ Calls exec (reentering kernel) and runs /init

+ This program creates the console (if necessary) and establishes descriptors 0, 1, and 2; forks sh.
9

The RISC-V Machine

+ Reduced Instruction Set Computer (RISC), version V

<
<
<
<

Open source Instruction Set Architecture (ISA)
Open source hardware description

Developed at Berkeley

Early but wide-spread adoption

* 64 bit datapath

o

O S

32-bit, 3-address instructions.

64-bit pointers (38 bits used)

8-bit bytes, 16-bit half words, 32-bit words, 64-bit doubles

32 general purpose registers.

Many (hundreds) computer status registers (CSRs): hart ids, uptime, retired instruction
counts, page tables, etc. (Not unusual to have these. Unusual because they’re open.)

10

Register file

B e o e ol ol e e)

o

32 registers: x0 through x31, fully symmetric
X0 is always 0, alias “zero”

pc is the program counter

ra typically used as return address register
sp is typically used as the stack pointer

fp (also: s0) is typically used for the frame pointer.
arguments are passed in a0 through a7, then on the stack
s0-s11 are callee “saved registers”; use after saving then restore

t0-t6 are caller “temporary registers”

Observation: process context is mostly saved registers.

caller
callee

caller
callee
callee
caller
caller
callee
caller

description
hardwired zero
return address
stack pointer
global pointer
thread pointer
temporary registers

saved register / frame pointer

saved register

function arguments / return values

function arguments
saved registers
temporary registers
program counter

11

Instruction Set Overview

O

Details found in the Porter book (see website)
+ Instruction set Green Card is 1 page summary (be aware: process layout is not xv6)
A very small number of instructions
= Most instructions are 3-address, with destination on the left
+ load and store are only memory instructions, with address on right
+ e.g. “ld al, 8(a0)” load double into al from 8 off from base a0
+« e.g. “sd al, 8(a0)” store double from al at 8 off from base a0
Many are synthesized (by assembler) from other instructions
+ e.g. “call routine” is “jalr ra, routine”
+ e.g. “mv al, a0” is “add al, a0, x0”
No condition codes: Conditional branches test and branch in one instruction
+* “Set” instructions conditionally compute 1 or 0 into destination register (wow!)
Short stores to registers zero remaining bits (there’s a sign-extend for signed work)
Multiply, divide, and remainder instructions.

12

Calling Convention® — Caller

“* To call a routine:
+ Put arguments in a0 through a7 (rest on stack, in reverse order).
“+ (all routine:
+ PC+4 saved in ra.
* Jump to routine.
* The call instruction is a shorthand macro for common case.
+ Routine does its work.
+ Result found in a0 (and possibly al).

* Good resource: decoded binary, user/cat.asm

13

Calling Convention® — Callee

+ On entry:
* sp points to top of stack
+ fp points to base of the caller frame
+ rais the return address
+ al..a7 contain arguments
+ Typical entry protocol (effectively). Stack is 8-byte aligned.
+ The current stack pointer will become the next frame
pointer.
+ Push on the return address.
+ Push on the old frame pointer
+ Push on saved registers
+ Push on locals.
* Actual entry protocol is tricky:.

+ Typical exit protocol:
+ Store return value in a0.
+ Restore old fp.
* Restore sp to entry level
+ return, using ra

*+ On exit:
+ a0 is result
+ Other a-regs garbage

14

