
February 16, 2022

The Monolithic xv6 Kernel & RISC-V ISA
Computer Science 432 — Lecture 5 — Duane Bailey

Announcements

✤ Lab 2 (xv6) is currently out; due Monday before the next lab
✤ Small Group meetings for Lab 1 (mex) today and tomorrow (Knuth)
✤ No office hours on Friday.

✤ Please follow along with Syllabus: Read Chapter 3 for Monday.

2

Kernel Structure

✤ We recall that the purpose of the kernel is:
✤ Multiplexing: Fairly give all processes the same view of the machine
✤ Isolation: Protect processes and the kernel from getting “wrecked” by problems & bugs
✤ Interaction: Support the intentional interaction of processes

✤ There are choices to be made:
✤ Do we have a kernel? If no: similar to approach of embedded devices.

✤ No overhead of kernel.
✤ No protection or support, generally.

✤ Do we have a monolithic kernel? An us-vs-them approach. Linux, many unix versions.
✤ Kernel encapsulates all code that runs in supervisor mode.

✤ Do we have a microkernel? Mach and many derivatives, including XNU, Darwin, et al.
✤ Kernel is very small, supporting message-passing among user-space resource controllers

3

Hardware Abstractions

✤ Hardware components are provided as services.
✤ Storage accessed through a file system using opaque/abstract file descriptors.
✤ CPU is shared through transparent context switching managed by a scheduler.
✤ Memory is constructed using exec which works with a system of virtual memory.
✤ Processes communicate through file descriptors 

✤ Kernel in xv6: a monolithic kernel that balances convenience vs. isolation

4

Privilege Modes

✤ RISC-V supports three execution privilege modes:
✤ Machine mode: a mode for booting and configuring machine.

✤ Flat physical memory.
✤ No limit on instructions.
✤ xv6 uses this mode only during boot process.

✤ Supervisor mode: a mode for executing a monolithic kernel.
✤ Virtual memory, with ability to change memory mapping.
✤ Access to privileged instructions.
✤ xv6’s monolithic kernel runs, for the most part, in Supervisor Mode

✤ User mode: mode for user-written programs and process execution.
✤ Virtual, protected memory.
✤ Instructions limited.
✤ Processes use this mode. Userland.

5

Moving Between Modes

✤ Isolation is established by severely constraining movement between modes.
✤ Generally, you can move into a more protected modes through a call mechanism

✤ A single instruction, ecall, controls access to Supervisor mode.
✤ When supervisor mode is entered, memory layout is modified:

✤ Kernel-specific mapping of virtual memory
✤ Kernel-specific stack
✤ Any communicated values must be manually moved between userland and kernel.

✤ Kernel validates call before fully entering into the kernel proper.
✤ When kernel is finished, it performs a sret to reverse the process
✤ Main observation: Kernel must be able to do its work without the user noticing.

✤ Similar approach in moving between supervisor and machine modes.

6

Kernel Organization

✤ Kernel is a collaboration of services
✤ Most services have source & header
✤ All kernel services run in Supervisor
✤ No isolation of services within kernel
✤ But: easier to communicate within kernel
✤ Mistakes here cause total system failure 

✤ Our goal: understand motivation for
decisions made in this code.

Process Structure

✤ The main unit of isolation is the process
✤ Processes represent a thread of execution; 

a locus of control
✤ Have their own virtual memory mapping
✤ Dedicated user text (code) and data
✤ Dedicated user stack (grows down; note position)
✤ Dedicated heap (grows up; note position)
✤ A dedicated “trapframe” — writeable area for transition between user & kernel
✤ A shared “trampoline” — code used to transition between user & kernel

✤ In the kernel, a process is represented by a struct proc

✤ This structure maintains resources dedicated to process: page table, state, stack, etc.

8

Booting and First Process

✤ Boot code:
✤ Bootloader is stored in ROM. Loads kernel into memory at 0x8000 0000 (devices below)
✤ Control transferred to kernel (at _entry), in machine mode.

✤ Kernel’s _entry:
✤ Sets up a simple 4K stack (one per hardware thread or hart), jumps to C code, start.
✤ This routine sets up initial page tables, initializes timer interrupts.
✤ Sets registers to appear as though there had been a supervisor->machine mode call
✤ “Returns” to main.

✤ Kernel’s main:
✤ Initializes devices (eg. console)
✤ From userinit routine, creates the initial process, init, with pid 1.

✤ Initial process (userland!)
✤ Calls exec (reentering kernel) and runs /init

✤ This program creates the console (if necessary) and establishes descriptors 0, 1, and 2; forks sh.

9

The RISC-V Machine

✤ Reduced Instruction Set Computer (RISC), version V
✤ Open source Instruction Set Architecture (ISA)
✤ Open source hardware description
✤ Developed at Berkeley
✤ Early but wide-spread adoption

✤ 64 bit datapath
✤ 32-bit, 3-address instructions.
✤ 64-bit pointers (38 bits used)
✤ 8-bit bytes, 16-bit half words, 32-bit words, 64-bit doubles
✤ 32 general purpose registers.
✤ Many (hundreds) computer status registers (CSRs): hart ids, uptime, retired instruction

counts, page tables, etc. (Not unusual to have these. Unusual because they’re open.)

10

Register file

✤ 32 registers: x0 through x31, fully symmetric
✤ x0 is always 0, alias “zero”
✤ pc is the program counter
✤ ra typically used as return address register
✤ sp is typically used as the stack pointer
✤ fp (also: s0) is typically used for the frame pointer.
✤ arguments are passed in a0 through a7, then on the stack
✤ s0-s11 are callee “saved registers”; use after saving then restore
✤ t0-t6 are caller “temporary registers”

✤ Observation: process context is mostly saved registers.

11

Instruction Set Overview

✤ Details found in the Porter book (see website)
✤ Instruction set Green Card is 1 page summary (be aware: process layout is not xv6)

✤ A very small number of instructions
✤ Most instructions are 3-address, with destination on the left
✤ load and store are only memory instructions, with address on right

✤ e.g. “ld a1, 8(a0)” load double into a1 from 8 off from base a0
✤ e.g. “sd a1, 8(a0)” store double from a1 at 8 off from base a0

✤ Many are synthesized (by assembler) from other instructions
✤ e.g. “call routine” is “jalr ra, routine”
✤ e.g. “mv a1, a0” is “add a1, a0, x0”

✤ No condition codes: Conditional branches test and branch in one instruction
✤ “Set” instructions conditionally compute 1 or 0 into destination register (wow!)

✤ Short stores to registers zero remaining bits (there’s a sign-extend for signed work)
✤ Multiply, divide, and remainder instructions.

12

Calling Convention* — Caller

✤ To call a routine:
✤ Put arguments in a0 through a7 (rest on stack, in reverse order).
✤ Call routine:

✤ PC+4 saved in ra.
✤ jump to routine.
✤ The call instruction is a shorthand macro for common case.

✤ Routine does its work.
✤ Result found in a0 (and possibly a1).

✤ Good resource: decoded binary, user/cat.asm

13

Calling Convention* — Callee

✤ On entry:
✤ sp points to top of stack
✤ fp points to base of the caller frame
✤ ra is the return address
✤ a0..a7 contain arguments

✤ Typical entry protocol (effectively). Stack is 8-byte aligned.
✤ The current stack pointer will become the next frame

pointer.
✤ Push on the return address.
✤ Push on the old frame pointer
✤ Push on saved registers
✤ Push on locals.

✤ Actual entry protocol is tricky.
14

✤ Typical exit protocol:
✤ Store return value in a0.
✤ Restore old fp.
✤ Restore sp to entry level
✤ return, using ra

✤ On exit:
✤ a0 is result
✤ Other a-regs garbage

