Working with xv6

Computer Science 432 - Lecture 4 - Duane Bailey

February 14, 2022

Announcements

* Everything in-person this week!
* Lectures in Wach. 114
+ Labs in Ward Lab (TBL301)
* Reviews in Knuth (TCL312b)
* Lab 1 due today, betore lab
* Questions?
* Lab 2 out today, due in a week

* Implement: sleep, find,
Xargs

Write a program, find, that takes, as arguments a directory and the name of
directory’s tree and prints relative paths to files with that name. Your progran

$ make gemu

init: starting sh

$ mkdir home

$ echo purple cows >home/waldo
$ mkdir away

$ echo mammoths >away/waldo

$ find . waldo

./home/waldo

./away/waldo

$

Here are some considerations:

You will find it useful to look at user/1s.c to see how directories are rea
fstat.

The file kernel/param.h defines MAXPATH, the maximum length of a file 1

Use recursion to drive the search process into subdirectories.

“w »

Every directory has entries for and “..”. Do not recursively search i1

Feel free to (from within xv6) make subdirectories and add files to test y
structures will persist until you perform a make clean in the top level dir

You will be manipulating strings. Look at user/user.h for library fun
example, you’ll find strcmp and strcat allow us to compare and concate:

Update the UPROGS variable in the Makefile to incorporate your find uti

2

Kernel Entrypoints

System call Description
int fork() Create a process, return child’s PID.
int exit(int status) Terminate the current process; status reported to wait(). No return.
| int wait(int *status) Wait for a child to exit; exit status in *status; returns child PID.
Pr OCESSES. int kill(int pid) Terminate process PID. Returns 0, or -1 for error.
int getpid() Return the current process’s PID.
int sleep(int n) Pause for n clock ticks.
int exec(char *file, char *argv[]) Load a file and execute it with arguments; only returns if error.
char *sbrk(int n) Grow process’s memory by n bytes. Returns start of new memory.
int open(char *file, int flags) Open a file; flags indicate read/write; returns an fd (file descriptor).
int write(int fd, char *buf, int n) Write n bytes from buf to file descriptor fd; returns n.
I / O: int read(int fd, char *buf, intn) Read n bytes into buf; returns number read; or 0 if end of file.
int close(int fd) Release open file fd.
int dup(int fd) Return a new file descriptor referring to the same file as fd.
int pipe(int p[]) Create a pipe, put read/write file descriptors in p[0] and p[1].
int chdir(char *dir) Change the current directory.
int mkdir(char *dir) Create a new directory.
int mknod(char *file, int, int) Create a device file.

. int fstat(int fd, struct stat *st) Place info about an open file into *st.
Flle SYStem: int stat(char *file, struct stat *st) Place info about a named file into *st.
int link(char *filel, char *file2) Create another name (file2) for the file filel.
int unlink(char *file) Remove a file.

Figure 1.2: Xv6 system calls. If not otherwise stated, these calls return O for no error, and -1 if
there’s an error.

System Calls for Processes — fork

+ Fork system call - creates new process
* When you call fork, a second “child” process is created
+ Child process is a copy of parent; child has a different process id.
+ Both processes return from fork...to the same caller...yikes!
+ In the child process, fork returns 0.
+ In the parent process, fork returns pid of child
+ As with all syscalls, fork will return a negative value on error.
+ See user/sh.c, for example.
pid = fork();
if (pid == 0) {
// child code..
} else if (pid > 0) {
// parent code..

} else {
fprintf(2, “Fork error.\n”);
}

System Calls for Processes — exit

* exit system call - destroy process and return resources

* The exit call is used to tell the kernel the process is to be ended
* Exit takes a status code.

* (0 indicates a normal, successful exit.
* Non-zero values indicate an error.
* The exit syscall does not return.

* In xv6, we use exit at the end of main (other systems: different).

pid = fork();
if (pid == 0) {
// child code..
} else if (pid > 0) {
// parent code..
} else {
fprintf(2, “Fork error.\n”);
exi1t(l); // exit with error

}

ex1t(0); // normal exit

System Calls for Processes — wait

* wait system call - wait for a child process to exit
* We use the wait system call to wait for a child process to exit.
* Returns the process id of the child that returns.
* You can pass a pointer to an integer to receive the child’s exit
status
* If you pass a null pointer ((int*)0), no status will be returned.
* In other versions of unix there’s a variety of wait routines.

pid = fork();
if (pid == 0) {
// child code..
exit(status); // status is local to child
} else if (pid > 0) {
// parent code..
wait(&status); // parent process captures status

}

System Calls for Processes

oo

oo

oo

The kill(pid) system call externally terminates a process by pid
+ We use the kill system call to terminate a child process.

+ The pid identifies the child process.

+* Returns 0, or -1 on error.

+ Typically you can only kill child processes.

The getpid() system call allows a process to determine its own PID
+ The first process (init) has process id 1.
* Process ids are assigned incrementally, reflecting creation order

The sleep(length) system call suspends a process for length “ticks”
The sbrk(size) system call is used to extend memory high water mark.

* Returns pointer to new memory.

+ Used by heaps.

Fxecuting Code — exec

* The exec(prog, argv) system call replaces process with prog
* The prog string is a path, identifying an executable.
* The argv vector is a vector of arguments
* The first entry is typically the name of the program.

* The vector is null-terminated.
* There are many forms of exec in other implementations.

pid = fork();

if (pid == 0) {
char *args[3];
args[0] = “echo”; args[l] = “hello”; args[2] = 0;
exec(args|[0O], args); // only returns if error
exit(l); // 1f we get to exit, it’s an error

} else if (pid > 0) {
// parent code..

}

I/O System Calls

* Unix processes maintain a list of file descriptors, small integers that
refer, indirectly, to targets for input and output.
* By convention:
* Descriptor 0 is “standard input” (typically a keyboard)
* Descriptor 1 is “standard output” (typically a monitor)
* Descriptor 2 is “standard error” (typically the same monitor as 1)
* When processes are created, these first three descriptors are
assigned
* Children inherit the descriptors of parents.
* While exec replaces the process with new code, file descriptors are
preserved.

I/0O System Calls — open, close

* The open(path, access) and close(fd) system calls allow you to
control access to files

* If open is successful, it returns the smallest unused file descriptor.
* The mode of access is determined by the access parameter

+ Read-only, write-only, read /write, create, and truncate
See kernel / fentl.h.

* The close syscall flushes the file buffers and marks descriptor free
* We typically close(0) and then immediately open.

Result: input redirection. Same with 1 (stdout), 2 (stderr).

char *argv[2]; // code to run input.txt through child cat
argv[0] = “cat";
argv[l] = 0;
if(fork() == 0) {
close(0);
open("input.txt", O RDONLY) ;
exec("cat", argv),;

I/O System Calls — read, write

* The read(fd, ptr, n) reads up to n bytes from fd into memory at ptr
* The number of bytes actually read is returned.
* At end-of-file, read returns O.

* The write(fd, ptr, n) writes up to n bytes to fd from memory at ptr
* The number of bytes actually written is returned.
* Returns fewer than n if there was an error.

// code typical of ‘cat’; see user/cat.c
char buffer[100];

int number;

while ((number = read(0, buffer, 100))) {
write(l, buffer, number) < number);

}

11

I/O System Calls — dup

* The dup(fd) system call creates a second reference to a file
* The new descriptor assigned is the first free descriptor
* We typically call close(fd) after the dup call.
Useful in manipulating pipes and redirection.

// code typical for building standard error
close(2); // old standard error closed
dup(1l); // standard output duplicated to fd 2.

12

I/O System Calls — pipe

* The pipe(int p[2]) system call creates a memory buffer, a pipe.
* Returns negative value on error.
Allocates a memory-based buftter for reading & writing.
You can read from the buffer using p[0]
You write to the buffer using p[1].
Pipes are often shared between processes; with each process
exclusively using one end and closing the other. See user/sh.c.
int pid = fork();

oo
oo
oo
oo

int p[2];
pipe(p); , , else if (pid > 0) {
if (pid == 0) { // child will read close (1) :
from pipe dup(p[l]i'
close(0); N .
?Up(p[@é); // standard in E}SZZEBE?%;:
C{grger()lg[%]); // send data to child via 1
close(p[1l]); }

// process input from 0O
} 13

File Status Calls — fstat, stat

+ The fstat(fd, struct stat *st) and stat(char *path, struct stat *st)
calls get meta-data about file descriptors and files by name
+ struct stat is described in kernel / stat.h
+ Describes type of file, size, and location on device
* Most common use is to identify type of file — file, directory, or
device

+ When you open directories, the file consists of a list of directory entries
+ struct dirent is described in kernel/fs.h
+ one file is the file name
+ we typically call stat on a path augmented by this file name.

+ See user/ls.c

14

