
February 14, 2022

Working with xv6
Computer Science 432 - Lecture 4 - Duane Bailey

Announcements

✤ Everything in-person this week!
✤ Lectures in Wach. 114
✤ Labs in Ward Lab (TBL301)
✤ Reviews in Knuth (TCL312b)

✤ Lab 1 due today, before lab
✤ Questions?

✤ Lab 2 out today, due in a week
✤ Implement: sleep, find,
xargs

2

Kernel Entrypoints

3

Processes:

Filesystem:

I/O:

System Calls for Processes — fork

✤ Fork system call - creates new process
✤ When you call fork, a second “child” process is created
✤ Child process is a copy of parent; child has a different process id.
✤ Both processes return from fork…to the same caller…yikes!

✤ In the child process, fork returns 0.
✤ In the parent process, fork returns pid of child

✤ As with all syscalls, fork will return a negative value on error.
✤ See user/sh.c, for example.

4

pid = fork();
if (pid == 0) {

// child code…
} else if (pid > 0) {

// parent code…
} else {

fprintf(2, “Fork error.\n”);
}

System Calls for Processes — exit

✤ exit system call - destroy process and return resources
✤ The exit call is used to tell the kernel the process is to be ended
✤ Exit takes a status code.

✤ 0 indicates a normal, successful exit.
✤ Non-zero values indicate an error.

✤ The exit syscall does not return.
✤ In xv6, we use exit at the end of main (other systems: different).

5

pid = fork();
if (pid == 0) {

// child code…
} else if (pid > 0) {

// parent code…
} else {

fprintf(2, “Fork error.\n”);
exit(1); // exit with error

}
exit(0); // normal exit

System Calls for Processes — wait

✤ wait system call - wait for a child process to exit
✤ We use the wait system call to wait for a child process to exit.
✤ Returns the process id of the child that returns.

✤ You can pass a pointer to an integer to receive the child’s exit
status

✤ If you pass a null pointer ((int*)0), no status will be returned.
✤ In other versions of unix there’s a variety of wait routines.

6

pid = fork();
if (pid == 0) {

// child code…
exit(status); // status is local to child

} else if (pid > 0) {
// parent code…
wait(&status); // parent process captures status

}

System Calls for Processes
✤ The kill(pid) system call externally terminates a process by pid

✤ We use the kill system call to terminate a child process.
✤ The pid identifies the child process.
✤ Returns 0, or -1 on error.
✤ Typically you can only kill child processes.

✤ The getpid() system call allows a process to determine its own PID
✤ The first process (init) has process id 1.
✤ Process ids are assigned incrementally, reflecting creation order

✤ The sleep(length) system call suspends a process for length “ticks”

✤ The sbrk(size) system call is used to extend memory high water mark.
✤ Returns pointer to new memory.
✤ Used by heaps.

7

Executing Code — exec

8

pid = fork();
if (pid == 0) {

char *args[3];
args[0] = “echo”; args[1] = “hello”; args[2] = 0;
exec(args[0], args); // only returns if error
exit(1); // if we get to exit, it’s an error

} else if (pid > 0) {
// parent code…

}

✤ The exec(prog, argv) system call replaces process with prog
✤ The prog string is a path, identifying an executable.
✤ The argv vector is a vector of arguments

✤ The first entry is typically the name of the program.
✤ The vector is null-terminated.

✤ There are many forms of exec in other implementations.

I/O System Calls

9

✤ Unix processes maintain a list of file descriptors, small integers that
refer, indirectly, to targets for input and output.

✤ By convention:
✤ Descriptor 0 is “standard input” (typically a keyboard)
✤ Descriptor 1 is “standard output” (typically a monitor)
✤ Descriptor 2 is “standard error” (typically the same monitor as 1)

✤ When processes are created, these first three descriptors are
assigned

✤ Children inherit the descriptors of parents.
✤ While exec replaces the process with new code, file descriptors are

preserved.

I/O System Calls — open, close

10

✤ The open(path, access) and close(fd) system calls allow you to
control access to files
✤ If open is successful, it returns the smallest unused file descriptor.
✤ The mode of access is determined by the access parameter

✤ Read-only, write-only, read/write, create, and truncate
See kernel/fcntl.h.

✤ The close syscall flushes the file buffers and marks descriptor free
✤ We typically close(0) and then immediately open.

Result: input redirection. Same with 1 (stdout), 2 (stderr).
char *argv[2]; // code to run input.txt through child cat
argv[0] = “cat";
argv[1] = 0;
if(fork() == 0) {
 close(0);
 open("input.txt", O_RDONLY);
 exec("cat", argv);
}

I/O System Calls — read, write

11

✤ The read(fd, ptr, n) reads up to n bytes from fd into memory at ptr
✤ The number of bytes actually read is returned.
✤ At end-of-file, read returns 0.

✤ The write(fd, ptr, n) writes up to n bytes to fd from memory at ptr
✤ The number of bytes actually written is returned.
✤ Returns fewer than n if there was an error.

// code typical of ‘cat’; see user/cat.c
char buffer[100];
int number;

while ((number = read(0, buffer, 100))) {
write(1, buffer, number) < number);

}

I/O System Calls — dup

12

✤ The dup(fd) system call creates a second reference to a file
✤ The new descriptor assigned is the first free descriptor
✤ We typically call close(fd) after the dup call.
✤ Useful in manipulating pipes and redirection.

// code typical for building standard error
close(2); // old standard error closed
dup(1); // standard output duplicated to fd 2.

I/O System Calls — pipe

13

✤ The pipe(int p[2]) system call creates a memory buffer, a pipe.
✤ Returns negative value on error.
✤ Allocates a memory-based buffer for reading & writing.
✤ You can read from the buffer using p[0]
✤ You write to the buffer using p[1].
✤ Pipes are often shared between processes; with each process

exclusively using one end and closing the other. See user/sh.c.
int pid = fork();
int p[2];
pipe(p);
if (pid == 0) { // child will read
from pipe

close(0);
dup(p[0]); // standard in
from p[0]
close(p[0]);
close(p[1]);

 // process input from 0
}

else if (pid > 0) {
close(1);
dup(p[1]);
close(p[0]);
close(p[1]);
// send data to child via 1

}

File Status Calls — fstat, stat

14

✤ The fstat(fd, struct stat *st) and stat(char *path, struct stat *st)
calls get meta-data about file descriptors and files by name
✤ struct stat is described in kernel/stat.h
✤ Describes type of file, size, and location on device
✤ Most common use is to identify type of file — file, directory, or

device

✤ When you open directories, the file consists of a list of directory entries
✤ struct dirent is described in kernel/fs.h
✤ one file is the file name
✤ we typically call stat on a path augmented by this file name.

✤ See user/ls.c

