
February 14, 2022

Working with xv6
Computer Science 432 - Lecture 4 - Duane Bailey

Announcements

✤ Everything in-person this week!

✤ Lectures in Wach. 114

✤ Labs in Ward Lab (TBL301)

✤ Reviews in Knuth (TCL312b)

✤ Lab 1 due today, before lab

✤ Questions?

✤ Lab 2 out today, due in a week

✤ Implement: sleep, find,
xargs

2

Kernel Entrypoints

3

Processes:

Filesystem:

I/O:

System Calls for Processes — fork

✤ Fork system call - creates new process

✤ When you call fork, a second “child” process is created

✤ Child process is a copy of parent; child has a different process id.
✤ Both processes return from fork…to the same caller…yikes!

✤ In the child process, fork returns 0.

✤ In the parent process, fork returns pid of child

✤ As with all syscalls, fork will return a negative value on error.

✤ See user/sh.c, for example.

4

pid = fork();

if (pid == 0) {

// child code…

} else if (pid > 0) {

// parent code…

} else {

fprintf(2, “Fork error.\n”);

}

System Calls for Processes — exit

✤ exit system call - destroy process and return resources

✤ The exit call is used to tell the kernel the process is to be ended

✤ Exit takes a status code.

✤ 0 indicates a normal, successful exit.

✤ Non-zero values indicate an error.

✤ The exit syscall does not return.

✤ In xv6, we use exit at the end of main (other systems: different).

5

pid = fork();

if (pid == 0) {

// child code…

} else if (pid > 0) {

// parent code…

} else {

fprintf(2, “Fork error.\n”);

exit(1); // exit with error

}

exit(0); // normal exit

System Calls for Processes — wait

✤ wait system call - wait for a child process to exit

✤ We use the wait system call to wait for a child process to exit.

✤ Returns the process id of the child that returns.

✤ You can pass a pointer to an integer to receive the child’s exit
status

✤ If you pass a null pointer ((int*)0), no status will be returned.

✤ In other versions of unix there’s a variety of wait routines.

6

pid = fork();

if (pid == 0) {

// child code…

exit(status); // status is local to child

} else if (pid > 0) {

// parent code…

wait(&status); // parent process captures status

}

System Calls for Processes
✤ The kill(pid) system call externally terminates a process by pid

✤ We use the kill system call to terminate a child process.

✤ The pid identifies the child process.

✤ Returns 0, or -1 on error.

✤ Typically you can only kill child processes.

✤ The getpid() system call allows a process to determine its own PID

✤ The first process (init) has process id 1.

✤ Process ids are assigned incrementally, reflecting creation order

✤ The sleep(length) system call suspends a process for length “ticks”

✤ The sbrk(size) system call is used to extend memory high water mark.

✤ Returns pointer to new memory.

✤ Used by heaps.

7

Executing Code — exec

8

pid = fork();

if (pid == 0) {

char *args[3];

args[0] = “echo”; args[1] = “hello”; args[2] = 0;

exec(args[0], args); // only returns if error

exit(1); // if we get to exit, it’s an error

} else if (pid > 0) {

// parent code…

}

✤ The exec(prog, argv) system call replaces process with prog

✤ The prog string is a path, identifying an executable.

✤ The argv vector is a vector of arguments

✤ The first entry is typically the name of the program.

✤ The vector is null-terminated.

✤ There are many forms of exec in other implementations.

I/O System Calls

9

✤ Unix processes maintain a list of file descriptors, small integers that
refer, indirectly, to targets for input and output.

✤ By convention:

✤ Descriptor 0 is “standard input” (typically a keyboard)

✤ Descriptor 1 is “standard output” (typically a monitor)

✤ Descriptor 2 is “standard error” (typically the same monitor as 1)

✤ When processes are created, these first three descriptors are
assigned

✤ Children inherit the descriptors of parents.

✤ While exec replaces the process with new code, file descriptors are

preserved.

I/O System Calls — open, close

10

✤ The open(path, access) and close(fd) system calls allow you to
control access to files

✤ If open is successful, it returns the smallest unused file descriptor.

✤ The mode of access is determined by the access parameter

✤ Read-only, write-only, read/write, create, and truncate 
See kernel/fcntl.h.

✤ The close syscall flushes the file buffers and marks descriptor free

✤ We typically close(0) and then immediately open. 

Result: input redirection. Same with 1 (stdout), 2 (stderr).

char *argv[2]; // code to run input.txt through child cat

argv[0] = “cat";

argv[1] = 0;

if(fork() == 0) {

 close(0);

 open("input.txt", O_RDONLY);

 exec("cat", argv);

}

I/O System Calls — read, write

11

✤ The read(fd, ptr, n) reads up to n bytes from fd into memory at ptr

✤ The number of bytes actually read is returned.

✤ At end-of-file, read returns 0.

✤ The write(fd, ptr, n) writes up to n bytes to fd from memory at ptr

✤ The number of bytes actually written is returned.

✤ Returns fewer than n if there was an error.

// code typical of ‘cat’; see user/cat.c

char buffer[100];

int number;

while ((number = read(0, buffer, 100))) {

write(1, buffer, number) < number);

}

I/O System Calls — dup

12

✤ The dup(fd) system call creates a second reference to a file

✤ The new descriptor assigned is the first free descriptor

✤ We typically call close(fd) after the dup call.

✤ Useful in manipulating pipes and redirection.

// code typical for building standard error

close(2); // old standard error closed

dup(1); // standard output duplicated to fd 2.

I/O System Calls — pipe

13

✤ The pipe(int p[2]) system call creates a memory buffer, a pipe.

✤ Returns negative value on error.

✤ Allocates a memory-based buffer for reading & writing.

✤ You can read from the buffer using p[0]

✤ You write to the buffer using p[1].

✤ Pipes are often shared between processes; with each process

exclusively using one end and closing the other. See user/sh.c.
int pid = fork();

int p[2];

pipe(p);

if (pid == 0) { // child will read
from pipe

close(0);

dup(p[0]); // standard in
from p[0]

close(p[0]);

close(p[1]);

 // process input from 0

}

else if (pid > 0) {

close(1);

dup(p[1]);

close(p[0]);

close(p[1]);

// send data to child via 1

}

File Status Calls — fstat, stat

14

✤ The fstat(fd, struct stat *st) and stat(char *path, struct stat *st) 
calls get meta-data about file descriptors and files by name

✤ struct stat is described in kernel/stat.h

✤ Describes type of file, size, and location on device

✤ Most common use is to identify type of file — file, directory, or

device

✤ When you open directories, the file consists of a list of directory entries

✤ struct dirent is described in kernel/fs.h

✤ one file is the file name

✤ we typically call stat on a path augmented by this file name.

✤ See user/ls.c

