
February 9, 2022

Operating Systems Structure
Computer Science 432 - Lecture 3 - Duane Bailey

Announcements

✤ Code Walkthroughs today &
tomorrow. Zooms in calendar

✤ Office Hours: T1-3, F9-10:30
Hybrid on Friday

✤ Ideal: in-person beginning
Monday.
✤ Lectures in Wachenheim 114
✤ Labs in Ward
✤ Code Walkthroughs in Knuth

✤ Contact me if you are isolated

2

Hints for Computer System Design
1984 & 2021—Butler Lampson

✤ A system designer of nearly unparalleled experience. Microsoft
fellow at MIT. Turing Award winner, among many other kudos.
✤ Is there a Zen of design? No.
✤ Are there Rules of Thumb? Sure.

✤ Systems are complex. Keep them as simple as possible.
✤ “Good implementation is not impossible. It’s merely hard.”
✤ Get it right. Make it fast. Expose power, but be flexible. Hide.
✤ The client is usually most informed. Help them help

themselves.
✤ Stick to an interface, but plan on prototypes.
✤ Share resources. Cache results. Identify hints.
✤ Just do it, computing offline if possible. Delegate.
✤ Handle errors. Use logs. Checkpoint if possible.

3

The Unix System
1974—Ritchie & Thompson

✤ Unix: A general purpose operating system:
✤ Less than $40,000
✤ Two man-years to construction
✤ Successful because it met no particular need

✤ Realize some important things:
✤ You can make do with less
✤ Small levers move big rocks
✤ Great ideas appear in the beginning of great systems
✤ Great is rarely big

4

Typical Structure of an O/S

5

Unix world view

O/S Services for User Support

6

✤ Command interpretation
✤ Integrated (most early O/S’s, aside from Unix)

✤ Secure
✤ Hard to modify

✤ Separate (shell execution, sh, bash, etc.)
✤ Anyone can extend the command set
✤ Everyone can have a different view

✤ Program loading and process execution
✤ Process control (fork, wait)
✤ Loading and dynamic linking (exec, mmap, etc.)

✤ I/O and File support
✤ Agnostic “file” descriptors
✤ Layout, security, integrity (open, read, write, close, link, unlink)

Multiple Personalities

✤ In layered, or ring-architecture
O/S (older DEC systems)
privilege is escalated in a
series of abstraction layers

✤ Outer layers provide abstract
user services

✤ Middle layers support
administrative services (logical
devices, loader services, etc.)

✤ Inner layers manage interface
to hardware (center)

✤ Unix provides a 3-layer system

7

Focus: O/S Split Personality

✤ Most (but not all) operating systems support at
least one privileged mode of execution, supporting
this view:
✤ Most applications are not privileged (Word,

grep, shells/interpreters)
✤ They can only access their own memory, ie.
✤ They cannot access anyone else’s memory

✤ Privileged accesses typically reside in the kernel:
✤ The kernel can do anything, anywhere

✤ Users must ask the kernel to perform privileged
operations on their behalf
✤ The kernel is then responsible for limiting

access, protecting the machine

8

Hardware Support for O/S

✤ Timers & clocks
✤ Special instructions: halt (m68k); int, syscall (x86); ecall (RISC-V);

context switch (VAX)
✤ Memory protection
✤ Limited access to I/O control memory or instructions
✤ Protected modes of execution (RISC-V: 3 modes, x86: 4, m68k: 2)
✤ Mechanisms for raising or lowering protection

✤ Anything that changes the code segment (interrupts, etc.)
✤ Synchronization primitives (load-reserved, store-conditional, etc.)
✤ Threading support
✤ Virtualization

9

The time(1) Command

✤ Describes the amount of time consumed by a program.
✤ The real (elapsed wall-clock) time
✤ The user time — actual time the program was running as user
✤ The system time — actual time the program was running as kernel

10

The Unix System Call

11

System Calls

✤ All system calls are
documented in Section
2 of the Unix manual:
✤ To get a short

overview of system
calls: man 2 intro

✤ To get a list of system
calls: man 2 syscalls

12

