Operating Systems Structure

Computer Science 432 - Lecture 3 - Duane Bailey

February 9, 2022

Announcements

eSO Terminal — ssh — 80x24
STRDUP(3) Linux Programmer's Manual STRDUP(3) B

* Code Walkthroughs today &
tomorrow. Zooms in calendar -

strdup, strndup, strdupa, strndupa - duplicate a string

“ QOffice Hours: T1-3, F9-10:30 srarsts |
Hybrld on Frid ay #include <string.h>

char *strdup(const char *s);

- Ideal: ln-person beglnnlng char *strndup(const char *s, size_t n);
char *strdupa(const char *s);
MOnd aY’ char *strndupa(const char *s, size_t n);
. . Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
+ Lectures in Wachenheim 114

strdup(): _SVID_SOURCE || _BSD_SOURCE || _XOPEN_SOURCE >= 500

g L abs in Ward strndup(), strdupa(), strndupa(): _GNU_SOURCE
. DESCRIPTION 0
%o COde Walkthroughs 11N Knuth v Te stdpfctin returns a pointer to a new string which is a :
* Contact me if you are isolated

Hints for Computer System Design
1984 & 2021 — Butler LLampson

* A system designer of nearly unparalleled experience. Microsoft
fellow at MIT. Turing Award winner, among many other kudos.
* Is there a Zen of design? No.
* Are there Rules of Thumb? Sure.

* Systems are complex. Keep them as simple as possible.
“Good implementation is not impossible. It’s merely hard.”
Get it right. Make it fast. Expose power, but be flexible. Hide.
The client is usually most informed. Help them help
themselves.

Stick to an interface, but plan on prototypes.
Share resources. Cache results. Identify hints.
Just do it, computing offline if possible. Delegate.
Handle errors. Use logs. Checkpoint if possible.

R B

A S

The Unix System
1974— Ritchie & Thompson

* Unix: A general purpose operating system:
* Less than $40,000
* Two man-years to construction
* Successful because it met no particular need
+ Realize some important things:
* You can make do with less
* Small levers move big rocks
* Great ideas appear in the beginning of great systems
* Great is rarely big

lypical Structure of an O/S

Kernel

Unix world view

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

signals terminal file system CPU scheduling

handling

swapping block I/O page replacement

character /O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers | memory controllers
disks and tapes physical memory

terminals

/S Services for User Support

#* Command interpretation
* Integrated (most early O/S’s, aside from Unix)
* Secure
* Hard to modity
+ Separate (shell execution, sh, bash, etc.)
* Anyone can extend the command set
* Everyone can have a different view
* Program loading and process execution
* Process control (fork, wait)
* Loading and dynamic linking (exec, mmap, etc.)
* /0O and File support
* Agnostic “file” descriptors
* Layout, security, integrity (open, read, write, close, link, unlink)

Muluple Personalities

user interface

* In layered, or ring-architecture
O/S (older DEC systems)
privilege is escalated in a
series of abstraction layers

* Quter layers provide abstract
user services

* Middle layers support
administrative services (logical
devices, loader services, etc.)

* Inner layers manage interface
to hardware (center)

Unix provides a 3-layer system

layer O
hardware

Focus: O/S Split Personality

+ Most (but not all) operating systems support at process D
least one privileged mode of execution, supporting
this view: free memory

+ Most applications are not privileged (Word,
grep, shells/interpreters)

. . process C
+ They can only access their own memory, ie.

+ They cannot access anyone else’s memory .
+ Privileged accesses typically reside in the kernel: Interpreter

+ The kernel can do anything, anywhere

+ Users must ask the kernel to perform privileged
operations on their behalf
+ The kernel is then responsible for limiting

process B

access, protecting the machine kernel

Hardware Support for O/S

* Timers & clocks

Special instructions: halt (m68k); int, syscall (x86); ecall (RISC-V);
context switch (VAX)

Memory protection

Limited access to I/ O control memory or instructions

Protected modes of execution (RISC-V: 3 modes, x86: 4, m68k: 2)
Mechanisms for raising or lowering protection

* Anything that changes the code segment (interrupts, etc.)
Synchronization primitives (load-reserved, store-conditional, etc.)
* Threading support

* Virtualization

A <

oo

The time(1) Command

* Describes the amount of time consumed by a program.
* The real (elapsed wall-clock) time
* The user time — actual time the program was running as user
* The system time — actual time the program was running as kernel

real Om1.917s
user 2m@.005s
SYysS Om@.005s

[]

10

The Unix System Call

user application

open ()
user
mode

system call interface

kernel
mode A

| open ()

2 Implementation
i » Of open ()

system call

11

System Calls

All system calls are
documented in Section
2 of the Unix manual:

XX

To get a short
overview of system
calls: man 2 intro

To get a list of system
calls: man 2 syscalls

~~

Terminal — bash — 80x24

Manual page access(2) line 1j}

ACCESS(2) Linux Programmer's Manual ACCESS(2)

access - check real user's permissions for a file

SYNOPSIS

#include <unistd.h>

int access(const char *pathname, int mode);

DESCRIPTION

access() checks whether the calling process can access the file path-
name. If pathname is a symbolic link, it 1s dereferenced.

The mode specifies the accessibility check(s) to be performed, and 1s
either the value F_OK, or a mask consisting of the bitwise OR of one or
more of R_OK, W_OK, and X_0K. F_OK tests for the existence of the
file. R_OK, W_O0K, and X_OK test whether the file exists and grants
read, write, and execute permissions, respectively.

The check 1s done using the calling process's real UID and GID, rather
than the effective IDs as is done when actually attempting an operation
(e.g., open(2)) on the file. This allows set-user-ID programs to eas-

12

