
Computer Science 432
Spring 2022
Lab 7: Supporting large files. Due on Wednesday, May 4.

Objective. To appreciate the inode structure.

Discussion. Common to all unix implementations is the inode-based implementation of the on-disk file structure.
Instead of storing files as large contiguous stretches of data, files are stored as collections of fixed sized blocks. The
block addresses of the blocks associated with each file’s data are stored directly or indirectly in a metadata on-disk
structure called an inode.1

There are a fixed number of inode structures ever available on a disk, and the number is determined when the disk is
initially formatted. The reason for this is because the inode is specifically designed to be a power-of-2 bytes long so
that a whole number of them may be allocated within a single disk block. This makes inode access fast, computable,
and efficient. The downside, of course, is that the structure of a file is rather inflexible.

How we make use of the metadata stored within the inode is entirely up to the implementor of the operating system.
In particular, the block addresses of the blocks that hold the data for a file must be directly or indirectly accessable
from the file’s inode. Non-address data takes up 12 bytes of store (2 each for type, major, minor, and nlink, and 4
for size), so a 64-byte inode only has room for 13 4-byte block addresses. How ominous. If each of these addresses
directly stored a pointer to a data block, the limit on the size of the file would be 13K. This is simply not reasonable.
(For example, while the un-made xv6 lab 6 has an average file size of 4K, it has 3 files larger than 13K.)
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Figure 1. The dinode structure native to xv6.

The approach used to by xv6 (see Figure 1), is to have the first 12 addresses point directly to data blocks while the
13th points to a dedicated block of 1K/4b = 256 addresses that indirectly point to logical blocks 12 through 267. By
having the single indirect block appear last in the inode, it makes very small files quickly readable; these files use a
single disk read for each block. Files with more than a dozen blocks access their data, indirectly, using up to two
disk reads per block.

Sadly, even this is insufficient. If we were to work on even fairly small projects (like Lab 6 for xv6), the compiler
would generate executables that could not be represented by this structure. Our goal this week is to develop a
modified inode structure (see Figure 2) where the first 11 addresses are direct, the 12th is indirect, and the 13th is
doubly indirect . A doubly indirect address is a pointer to a block of addresses to blocks that contain direct addresses.
The total number of 1K blocks accessible in such a structure is 11 + 256 + 256 ∗ 256 = 65803, allowing for files that
approach 65 megabytes in size. Incredible inodes, Batman!

1In xv6 the inode structure that appears on disk is a dinode, while the larger cached version found in the kernel’s memory is an inode.
We will refer to the organizational structure universally as an ‘inode’, but the reader is reminded that context—memory or disk—must
be used to distinguish between the two related forms. Good luck!
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Figure 2. The modified dinode structure used in this lab.

The Assignment. The basis for this lab is found in the lab7 repository (use your user id rather than 22xyz):

$ git clone ssh://22xyz@lohani.cs.williams.edu/~cs432/22xyz/lab7.git

Make sure that you’ve read Chapter 8 from the book. The sections on the buffer cache and inodes are particularly
important, here.

The goal of this lab is to modify the xv6 code so that it supports a version of struct dinode (and struct inode)
whose addrs structure contains three types of block addresses:

• Direct block addresses. Direct addresses identify disk blocks that contain the data stored in files. This week,
the first 11K of data is accessed through direct addressing.

• Indirect block addresses. Any indirect address points to a block of 256 direct addresses. Thus an indirect
address allows one to access 256K of a file’s data. As with the current xv6 implementation, our modified
dinode will contain a single indirect address, in the second-to-last addrs slot. The next 256K of data is
accessed through this one link.

• Doubly indirect block addresses. A doubly indirect address points to a single block of indirect addresses. This
is not a feature of the current dinode, but we would like to have one doubly indirect block address in the last
addrs slot. The next 64M of data is accessed through this one link.

Here is an approach to implementing this revised version of the inode structuring mechanism:

1. The definition of the disk-based struct dinode is found in kernel/fs.h and the memory-based struct inode

is found in kernel/file.h. You may find it useful to define or modify constants associated with these structures
to support this new approach to file layout. Nothing you do should end up changing the size of the addrs

array in these structures, just the interpretation of each of the array’s addresses.

2. The function bmap(ip,bn) (see kernel/fs.c) is responsible for determining the block address of logical block
bn of the struct inode pointed to by ip. This is the one location where the mapping of addrs entries to
logical blocks is performed. First, look at the existing code and make sure you understand what each statement
does. Note, in particular, how bmap() acts when the requested block number is out of range.



3. Now, with a sound plan in mind, make changes to bmap(ip,bn) that will allow it to compute and return disk
block addresses for a much larger range of values in bn. Areas of focus:

• Make sure that you always call brelse for any block that you bread. Doing this keeps the reference
counting in the buffer cache accurate and avoids deadlock.

• Make sure you only allocate block(s) as they are needed.

• Handle errors with grace.

4. The bmap() method is responsible for allocating blocks associated with file growth. The itrunc() is responsible
for recycling all the blocks associated with a file when it is deleted. Don’t forget to deallocate indirect blocks,
as well.

5. The mkfs system (the Ubuntu utility in the mkfs subdirectory) depends on your definition of NDIRECT and
NINDIRECT. If you have made changes to these constants, it is best to remake everything from scratch with:

$ make clean

$ make qemu

This will re-make the mkfs utility and cause it to re-make the file system image, fs.img.

If you encounter logical problems with your code that cause it to crash, it is best if you remove fs.img and
re-make it from scratch:

$ rm fs.img

$ make qemu

Because the file system is persistent , you may have structural bugs that persist as well. Be careful!

6. The utility bigfile will create a very large file called big.file, limited only by the layout and interpretation
of the inode structure. You should be able to run bigfile successfully, remove big.file, and then pass the
bigfile test again.

7. If you have problems with debugging your allocations, I’ve provided a user utility (and system call), df, which
reports the number of free blocks on the current disk.

8. When your ready, make clean, and then push your work to the server for review and grading!

Thought Questions. Please think about the following questions in preparation for meeting in small groups:

1. The contents of the struct dinode are read from the disk into a memory-resident version called struct inode.
It’s important to make sure that the addrs array is faithfully copied from one structure to the other. Where
does that happen?

2. The source code for mkfs.c has not been changed from the release version of xv6. In particular, it does not
know about your doubly indirect addressing mechanism. What assumptions are we making about the use of
mkfs? Are these reasonable?

3. Why is it necessary that itrunc be correctly written? Suppose we did not make changes to itrunc. What
would happen?

4. How does the bigfile test work?

?


