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Lab 5: Copy-on-Write Memory Optimization, due before break.

Objective. To reduce memory pressure by sharing pages whenever possible.

Discussion. When processes are created they get access to a dedicated virtual address space. This isolation of
memory supports:

• State independence. Processes must compute as though they had access to a machine dedicated to just their
work.

• Controlled concurrency. We want processes to be able to coordinate concurrent activities. We must be able
to treat processes differently in critical sections where several process states are coordinated through a shared
memory.

• Basic security. We do not want the sensitive information that is often stored in memory to escape the process’
sandbox.

Though processes imagine they make use of dedicated virtual memory, there are good reasons to actually share
memory among processes, even if they’re not aware their memory is shared:

• Read-only features of a process—like common library code—can be freely shared without concern. Code sharing
can considerably reduce the memory pressure associated with running many related processes concurrently.

• Writable features of related processes that are initialized once and read many times. Memory that is dynamically
allocated, for example, is often developed as the problem unfolds, and then is relatively static as the problem
is solved by teams of child processes.

• Spatial locality suggests that there may be some process startup improvements if we delay cloning memory
that has write access until the last possible moment.

We have seen, in our readings and lectures, that there are several optimizations that leverage the flexibility of
per-process virtual address translation. Among these is the potential of copy-on-write (COW) sharing of memory
between processes and their offspring. The goal of this optimization is to share memory between processes until the
last possible moment—when one of the processes attempts to write to a page they all share. Only at that moment
is the additional physical memory allocated to allow divergence of state.

As was discussed in Chapter 4, copy-on-write requires some very careful bookkeeping in order to maintain the facade
of a process-dedicated physical store. This is the subject of the work we will be doing in lab before Spring Break.

The Assignment. Implement Copy-on-Write (COW) optimization for xv6. The basis for this lab is found in the
lab5 repository (use your user id rather than 22xyz):

$ git clone ssh://22xyz@lohani.cs.williams.edu/~cs432/22xyz/lab5.git

Again, this is a traditional xv6 repository with very few extensions. If you have questions about last week’s work on
page tables, make sure we talk those through before you attempt this more completed work, here.

I assume you’re up to speed on the readings, through Chapter 4. Given that, I believe the following is a workflow
that will get you through the the COW optimization:

1. Before we begin any substantial modification of the kernel, it is important that we be able to identify when a
process is attempting to write to a read-only page. (We will use this behavior to trigger the construction of
a writable copy.) In usertrap (kernel/trap.c), identify where page faults could be recognized. Specialize
the development of usertrap error messages to report read-based page faults, write-based page faults, and
execution-based page faults. To indicate a process must be killed, use the code:

p->killed = 1; // this was a fatal error

Notice these messages are not kernel panics. They’re simply recognition of bad behavior in userland.

Verify your work by attempting to write to a page you know the user cannot write. (Hint: TRAMPOLINE in
kernel/memlayout.h, which is based on MAXVA in kernel/riscv.h is not readable, writable, or executable by
the user.)



2. Encapsulate your code that manages all write-based page faults in a dedicated routine or handler . I suggest
declaring this function in the following manner:

uint64

COWhandler(pagetable_t pagetable, uint64 va);

This function should return 0 if the fault could be fixed and -1 otherwise. At this point, of course, it’s difficult
to return 0. Think carefully about which kernel file to put this in, or be prepared to move it, later. While there
is no real modularity in the kernel, there are better and worse places to locate your code.

Within your handler, distinguish between:

• Write-faults that are not valid virtual address mappings. These cannot be fixed and should fail.

• Write-faults accessing valid addresses that do not have appropriate PTE W settings. Eventually, some of
these faults will represent a demand to build a writable copy and retry the original instruction.

For those that have valid mappings, print the associated page table entry with vmprintpte, a utility function
in kernel/vm.c. This will allow you to verify that your handler is getting used in the right situations.

Verify your implementation. For example, what happens when you try to write at an address above MAXVA?

Add and commit your work to this point.

3. Now, implement reference counting for each page in physical memory. Here is an approach:

(a) Declare (do not use kalloc) an appropriately sized array whose entries are sufficiently large for our
purpose. How many physical pages are actually in the machine? (Hint: see kinit, which builds the
kalloc free list.) How many agents could share a single page? This array should be initialized in kinit

in kernel/kalloc.c.

(b) To support modularity, you may find it useful to write a helper function to, given a physical address,
return a pointer to the reference counter associated with the page. You should make sure you return a
null (0) pointer when the physical address is not meaningful. Place this function in kalloc and declare it
in defs.h.

(c) Modify the vmprintpte method so that it now includes a count of references to the page that contains
the physical address mapped by the page table entry. This may be useful in debugging the handling of
COW pages.

(d) The kalloc (kernel/kalloc.c) routine allocates (ie. hands over for referencing) pages from a pool that
are currently free. A page is free because no one is referring to it. Modify kalloc to set the page’s
reference count appropriately.

(e) Write a new routine, kshare (see prototype in kernel/kalloc.c), that takes a physical page address and
increases the reference count associated with that page, recording the fact a new process is now referring
to an old page. We would use kshare in situations where we might otherwise use kalloc to reduce a
process’ memory footprint.

(f) The kfree routine frees one of the references to a page allocated by kalloc. Modify this to reduce the
reference count. Only when the page no longer appears to be referenced should it actually return the page
to the free list.

With this behavior, kfree can be thought of as undoing the work of either kalloc or kshare.

At this point, the reference counting should work correctly for the current use case: kalloc and kfree work
in opposite ways and we never actually call kshare. Compile xv6 and verify it is still working as expected.
Notice that any write-fault printing of PTEs currently have a reference count of 1.

Add and commit your work to this point.

4. Now, we’ll start to make substantial changes, writing a new version of the fork routine that allows parent and
child processes to translate virtual addresses to shared physical pages. (The page tables, themselves, should
not be shared.)

While it is convenient to think of our work as a modification of fork, I suggest you duplicate the fork method,
naming the unmodified code forkOrig. This will allow you to recall how the unshared version of the page
table was constructed.



Now, carefully modify fork so that the child page table is shared with the parent:

(a) Write a helper method, uvmshare, in kernel/vm.c.

(b) For non-writable pages, we should simply share them by including a second reference to the parent’s page.
Copy the metadata from the parent PTE to the child PTE.

(c) Add a definition for PTE COW in kernel/riscv.h. This should make use of one of the two bits (8 or 9)
reserved for use by the operating system. This bit logically means “this page is temporarily write-
protected.”

(d) For writable pages, after sharing the page, you should clear the PTE W and set the PTE COW bit in the
metadata for both the parent and child pages.

Notice that this page now becomes a read-only page. Convince yourself that this approach is consistent.

5. Once you’ve modified fork, anyone attempting to write will cause errors. Try booting the operating system
and observe how the system fails. How did you expect it to fail? Did it fail in the expected manner?

6. Our task is to carefully implement, in the COWhandler, the “copy” part of the copy-on-write optimization. Here
are some hints and observations:

(a) When a process attempts to write to a shared page it will fault and call your write-fault handler. The
path to your handler will not have changed the exception program counter (epc), so if you were to return
the value 0, the instruction would re-execute. This can be exciting.

(b) When you attempt to write to a page that is protected against writes, but not a COW page, it remains
reasonable to flag an error. Just because the user wants to write to a page that is read-only does not
mean they should be able to. Don’t spoil your children by letting them do bad things.

(c) When you get a write-fault and it is a COW page, our goal should be to re-execute the instruction, but
with a new, unshared, writable copy of the currently shared COW page.

(d) The treatment of the COW page is agnostic of whether a process was a parent or a child when the page
was first shared. Either the parent or child or both may eventually want to write to this page.

(e) When a write-fault happens for a page that is shared, a new page should be allocated, the contents copied
over. (Hint: uvmunmap, mappages, and memmove. The model for this code is found in the forkOrig code,
above.) The metadata on the new page should revert to its pre-shared state. Since this page is no longer
a reference to a shared page, the reference count should be decreased. How?

(f) When a write-fault happens for a page that is “shared” but has reference count 1, do not create a new
copy of the page. Use the original. Make sure, of course, that you modify the metadata appropriately.

7. There is one final part of the kernel that must be made aware of the copy-on-write process: copyout (in
kernel/vm.c). This routine, recall, is responsible for reading data from a kernel address and writing it to a
user address.

Here’s an approach: Before copyout attempts to write to a page, it should check to see if the PTE COW bit is
set. If it is, it should call your code to handle a write-fault. Because you are calling this from the kernel, you
must be very careful to pass it the appropriate page table. This is why we wrote the COW handler to accept
a pagetable as well as the virtual address associated with the fault.

8. At this point, you should be able to pass all the tests in the cowtest testing facility from MIT.

9. Finally, add, commit, and push your code for review and grading.

Thought Questions. Please think about the following questions in preparation for meeting in small groups:

1. Page tables, of course, are allocated by kalloc. Will they end up being shared, or not? (Hint: these are
structures only ever written by the kernel .)

2. It seems that, through fork, we’re always constructing new page tables by sharing their target pages with some
other process. Where are pages originally constructed?

3. How does the cowtest application work?

?


