Computer Science 432
Spring 2022
Lab 3: System Calls, due next Monday before lab.

Objective. To implement one or two new system calls.

Discussion. This week we will be extending the kernel to include some new system calls. We add new system calls
to the kernel when we’re interested in improving the kernel’s interface. There are lots of reasons why this might be
necessary. Adding new system calls is a challenge and, in the end, a huge responsibility.

Access to the kernel is difficult. It is a long and winding road through various gates that make sure that the user’s
rogue behavior is not able to harm or wreck the kernel. Our interest, here, is to understand how to improve services
for users while not compromising the kernel by violating its constraints.

Let’s imagine that you're calling open(path,access). This is a typical service that the kernel provides its users.
Here’s what happens when we call open(2):

1. In user space, the open(2) entry-point is defined in user/user.h as follows:
int open(const char*, int); // open a file, returning a descriptor
The actual definition of this call is an assembly routine, found in user/usys.S:!

# generated by usys.pl - do not edit

.global open

open:
1i a7, SYS_open # SYS_open is defined in kernel/syscall.h
ecall # "System entry call"; jumps to supervisor mode
ret

The value of SYS_open (defined as 15 in the kernel), is saved in register a7 and then the ecall instruction
causes the machine to enter supervisor mode.

2. The machine trap mechanism (eventually) calls syscall (see kernel/syscall.c). This “dispatch” routine
carefully routes the call to the appropriate routine found in the syscalls vector. In this case, it looks
in syscalls[SYS_open] and finds the pointer to the routine sys_open. These system routines are located
throughout the kernel, typically in the area that is most appropriate to manage the particular service.

While we’re here, notice that every system call is routed through this routine. If we’re interested in observing
or controlling access to the kernel, this is good place to do it.

3. The sys_open routine is found in kernel/sysfile.c. This routine is responsible for accepting the parameters
from user space and returning an appropriate value after the service has been completed. Because the user
cannot be trusted, the parameters (a string and an integer) are manually copied from the user’s address space
into the kernel. This is accomplished by “copy-in/copy-out” data portage routines. Here’s what the entry and
exit of sys_open routine looks like:

uint64
sys_open(void)

{
char path[MAXPATH];
int fd, omode;
int n;

if((n = argstr(0, path, MAXPATH)) < O || argint(1l, &omode) < 0)
return -1;

code for opening a file at a path ...

return fd;

}

IThe uppercase .S extension is a signal to the gcc compiler that it should run the C pre-processor on the file before assembly, allowing
you to define values and include header files. Indeed, usys.S includes kernel/syscall.h.




The argstr and argint routines are responsible for the copy-in portage of data from user to kernel space. It’s
vitally important that we use these routines because (1) the incoming arguments are stored in user registers
and (2) because they will verify the structure of the arguments. For example, argstr will make certain that
the pointer is valid in user space and does fool the kernel into copying data from a part of the system the user
cannot access. Every system call, of course, makes use of different calling signatures, so each will make use of
different portage commands. Here’s a short list to choose from:

Routine Purpose

argraw(n) Fetch the n-th argument as a 64-bit integer.

argint(n,ip) Fetch the n-th argument as a 32-bit integer through reference ip.
argaddr (n,ap) Fetch the n-th argument as a 64-bit user pointer through pointer ap.
argstr(n,buf ,max) Fetch the n-th argument, a C string, max character kernel buf.
argfd(n,fdp,filep) Fetch the n-th argument, a descriptor, return it and its struct file.
copyout (upgtbl,uptr,kptr,s) | Copy s bytes from kernel address kptr to user address uptr.

The source for these routines is found in kernel/syscall.c. It is worth looking at the source code.

4. Notice that sys_open returns a uint64. Typically this is a non-negative file descriptor, but if there are problems
with the system call, it returns a negative number. When sys_open returns, its return value is captured by
syscall, and returned in the user’s a0 register. This linkage—through the trapframe—will be discussed in
Chapter 4. We'll get there soon enough.

5. In any case, the trap mechanisms eventually perform a downgrade of privilege and a return of the system call
result in a0, with an sret. We’re now in the user-space open, which immediately returns a0 to the user. Notice
that the user interprets a0 as a signed 32-bit integer.

We will want to make sure the linkage at each step works correctly. Failure, here, is not an option.

The Assignment. We’ll implement two system calls in xv6. The basis for this lab is found in the 1ab3 repository:
$ git clone ssh://22xyz@lohani.cs.williams.edu/"cs432/22xyz/lab3.git

The repository contains a fairly stripped-down version of xv6 with a few modifications to support this lab. We're
starting fresh; there’s not much utility in carrying-forward utilities from one lab to the next.

Assuming you’re up to speed on the readings, here is a workflow that will get you through this week’s tasks:

1. Our first task is to write, trace, a utility for tracing system calls made by user processes.

Here is a typical user process: we look for hello in the file READVME:

$ grep hello README
$

It’s not there. Still there was lots going on.

Our trace command will accept a hexadecimal bit mask that identifies which system calls you wish to follow
during an execution. Here, the read(2) system call is traced. As they happen, each system call is logged,
along with its return value. Internally, read has system call number 5 (see kernel/syscall.h), so we provide
a hex bit mask with bit 5 set:

$ trace 20 grep hello README
3: read -> 1023

3: read —-> 968

3: read —> 235

3: read > 0

$

The value before the colon is the process id of the process reporting the kernel call. The identified system
calls originate at line 17 of user/grep.c. The return values, remember, are the number of bytes actually read.
Clearly, the grep process is finished when there is no more data to be read from README.



Here is a more significant trace. It traces any system call:

: close => 0

$ trace fffffffe grep hello README
8: trace -> 0

8: exec -> 3

8: open -> 3

8: read -> 1023

8: read -> 968

8: read -> 235

8: read > 0

8

$

Here, we see the trace system call is returning. The trace program then execs the grep executable. The
grep utility must, of course, open (and later close) the README file. We're seeing that that file is accessed
through descriptor 3.

While there are only system call numbers between 1 and 21 or 22, this hex mask (covering calls 1 through 31)
is a good general purpose use case for the trace utility.

Here is an approach to implementing trace:

(a)

I’'ve written the trace utility in user/trace.c. You should update the UPROGS variable in Makefile to
include this in xv6.

Try to make xv6. Notice it cannot compile trace.c because there is no trace system call.

Pick an appropriate non-zero system call number for trace. These numbers are found in kernel/syscall.h.
(Do not, by the way, put anything other than define statements in that file; it is included in both C and
assembly code.)

Add a prototype for the trace call to user/user.h. You will see an area dedicated to system calls. The
trace call takes a uint32 and returns an int.

Add a stub to user/usys.pl. This is a perl script that automatically generates the file user/usys.S.
From the top directory, you should now be able to:

$ make user/usys.S

This will create the ecall linkage to the system. Inspect user/usys.S to ensure this is the case.

Now, we’ll allow every process to keep track of the dedicated trace mask for that process. This information
should be stored in the struct proc definition, found in kernel/proc.h. I suggest adding the declaration
to the end of the definition so that we don’t disturb the relative offsets of other fields. There should be
no problem moving the fields around, but let’s minimize the number of things that might go wrong.

Write the system call, uint64 sys_trace(void), and place it in kernel/sysproc.c. This routine should
retrieve its (user) argument and place it in the field you've reserved in the struct proc pointed to by
the result of calling myproc (). You can see how other system calls do this in the same file you're placing
sys_trace.

We need to make sure that each process maintains a reasonable value for your trace mask. In the file
kernel/proc.c, we find the routines that maintain processes. Two are important to us: allocproc,
which allocates a new process from the process table, and fork, which effectively copies process state to a
new process. In allocproc, we need to initialize the process state mask appropriately. In fork, we need
to copy the trace mask from the parent to the new child process.

Be aware that we are playing with a part of the operating system that may be concurrently accessed
by several cores at once. Make sure that you respect the local locking rules. My advice is to keep your
manipulations of process code near similar manipulations of other fields in the process structure.

Now, we need to provide the final connection—from syscall to sys_trace. In kernel/syscall.c, find
the syscall system call dispatcher. Notice, again, how it vectors through a table of pointers to routines.
Update the table to include the trace system call. Notice the syntax of the array initialization: each entry
specifies where in the statically allocated array the pointer is stored. Edit this carefully.

At this point you should be able to build xv6. Running the trace program will simply run the subordinate
command. That’s because we haven’t actually interpreted the trace mask anywhere. We’ll do that in the
next step.



(k) In the syscall dispatch method, capture the return values from system calls and, if when necessary, print
the process id, the name of the system call, and the return value from the system call. You may use
printf, here, but you will have to build a table that translates system call numbers to system call names.
Declare that table using the syscalls vector declaration as a model.

(1) Build the system and test your implementation of the trace program.

2. Now, write a new system call, sysinfo. This call collects and reports information about the running system.
It takes one argument, a pointer to a struct sysinfo, (see kernel/sysinfo.h). The kernel should fill in the
fields of this structure: the freemem field should be set to the number of bytes of free memory and the nproc
field should be set to the number of processes whose state is not UNUSED.

Here is the rough outline of an approach:

a) I've provided a program, sysinfo.c, that you can use to exercise your system call. You should modify
y
the build system to include this program.

(b) You will need to declare the userland version of the system call, sysinfo:

struct sysinfo;
int sysinfo(struct sysinfo *);

Notice that you will not need to add an include the struct sysinfo definition here; the compiler only
needs to know that the pointer should be to a struct sysinfo. In the sysinfo.c program, however, I
did need to include the definition since I'm interpreting the results of your system call.

With a little more careful work, on the user side, you should be able to build the system. Using the
sysinfo program, however, will fail since there is no system call in kernel space.

(¢) To collect the amount of free memory, you should add a helper function to kernel/kalloc.c. This
function should compute the number of bytes available in the kmem free list. You should make sure you
acquire the spinlock kmem. lock before you interpret the free list structure and release it immediately after.
Failing to do this may cause a race condition in your routine that will be hard to survive.

(d) To collect the number of processes whose state is not UNUSED, you should add a helper function to
kernel/proc.c. You've been here before. It may be helpful to see how allocproc traverses the process
list as a model for your code.

(e) Now, write the kernel side of the sysinfo system call, including the routine that does all the real work,
sys_sysinfo. Notice that the results of this routine must be shipped back to a structure in user space.
You will have to carefully use the copyout routine (see kernel/defs.h) to move a chunk of memory from
the kernel to user space. A good example of how this is done is in the implementation of the fstat system
call. The routine sys_fstat is in kernel/sysfile.c and it calls filestat in kernel/file.c.

(f) You should now be able to build everything. I've also included the sysinfotest.c program from MIT.
You may find this useful in detecting problems with your code.

3. Test, add, commit, and push your changes for collection and review in small group meetings.
Thought Questions. Please think about the following questions before we meet in small groups.
1. When we perform
$ trace fffffffe grep hello README

We see a call to exec, but no call to fork. Looking at user/trace.c we see that’s correct. Why doesn’t fork
get called?

2. There is no system call with id zero. Why do you think this is?

3. Looking at the trace.c assembly in user/trace.asm, we note that ishex saves the return address to the call
frame, but hextoi does not. What is happening, here?

4. How does the MIT sysinfotest.c program work?



