
Computer Science 432
Spring 2022
Lab 2: Getting to Know xv6, due next Monday before lab.

Objective. To get an introduction to xv6 on RISC-V.

Discussion. This week we will start using xv6, the student-friendly unix operating system developed at MIT. We
will download and build xv6, and then write some user-space programs that interact with this very simple kernel.
You should not feel that we’ve made any compromises by using xv6, it’s simply a matter of distilling the O/S down
to the “simplest complex” version of an operating system. You will be thankful down the road.1

It is assumed that you have read Chapter 1 of the MIT text. If you have not, you should not begin this lab until you
have finished the reading.

Preparation. We have already installed the tools necessary for you to download and install the xv6 operating
system on lab machines. I encourage you to use the Unix and Ward labs. If you wish to install everything on your
own machine, you can follow the directions found in the Resources section of the class website.

Assuming you’re using our lab equipment, or a machine that has been appropriately prepared, you can now download
sources for xv6, typically as part of a lab assignment. This week we will clone the O/S as part of the lab2 repo:

$ git clone ssh://22xyz@lohani.cs.williams.edu/~cs432/22xyz/lab2.git

This will install a basic version of xv6 in the directory lab2. To build and run the O/S, you should:

$ cd lab2

$ make qemu

The makefile will make sure that the O/S is compiled using the RISC-V cross-compiler.2

When we write code for labs involving xv6, the make system will compile our code for us, and copy the resulting
executable into a file system for xv6 to access after the O/S boots.

Once the system is made, the qemu-based RISC-V emulator (pronounced: “kee-moo”), fully simulates the hardware
as it boots and runs the operating system.

When you’re in xv6 be aware that, at this point, the operating system has only the most basic functionality. For
example, there is a cat program, but no more or less. Even the shell is pretty limited: there are no environment
variables (e.g. PS1 or PATH). In return, you are able to see (and, soon, understand) the source code for these user-space
utilities in the user directory. Similarly, the kernel support for the operating system has been simplified.

To leave qemu you must press control-a, then x.

Assignment. The work this week involves familiarizing yourself with xv6 and the workflow necessary to add new
user-level utilities.

1. As we described, above, clone the lab2 repository:

$ git clone ssh://22xyz@lohani.cs.williams.edu/~cs432/22xyz/lab2.git

$ cd lab2

2. Test-build the operating system:

$ make qemu

... lots of compiling ...

xv6 kernel is booting

hart 2 starting

hart 1 starting

init: starting sh

$

1Be aware that I’ve captured the version of xv6 that corresponds to our version of the textbook. Our labs, as well, are written to
make use of a specific version of the xv6 source code. While you can find these resources on the web at MIT, please be aware that those
versions will necessarily deviate from our particular focus in this course.

2A cross-compiler is simply a compiler that runs on one type of architecture, but generates executables for another. For example, if
you are on a Windows machine but developing applications for a phone, you’re using a cross-compiler that runs on an Intel box, but
generates executables that run on ARM devices. Here, we are simply trying to have the compiler generate code for a RISC-V architecture.



Notice that the prompt for xv6 is $. Look around and see what utilities are available for you to use.

There is no ps command in xv6, but if you type control-p xv6

will print information about each process.

Exit the operating system by typing control-a, then x.

3. In the user-space directory, user, implement a simple version of the sleep(1) program. Your program should
accept a single integer argument that indicates how long, in ticks, the program should pause before exiting.
A “tick” is the length of time between interrupts generated by the timer chip. Your program should print an
error message if the user fails to specify an argument.

Here are some things to consider, as you implement sleep:

• You may find it useful to to look at other user-space programs to get a sense about how to obtain
command-line arguments in xv6. Also, notice how include files are typically specified.

• There is a rudimentary library of routines provided for you in ulib.c. You can access these by including
user/user.h in your code. This library contains, for example, a simple implementation of atoi(3).

• Note that user/user.h also declares the system calls that are available. For example, there is a sleep(2)

entry point whose argument is the number of ticks to pause. This kernel call is implemented in sys sleep

in kernel/sysproc.c (because it’s related to process scheduling). The actual system call is to the kernel
in the RISC-V assembly user/usys.S: it places a sleep-specific constant in a7, and then performs an
ecall. (This file is constructed as a side-effect of the building process. If you don’t see that file, type
make user/usys.S in top level directory of the lab.)

• In xv6, you need call exit at the end of your main program. This, as you know, terminates the process
and returns all resources to the operating system. (In more advanced implementations, the main method
is called by a start routine that performs this task for us.)

• When you are finished with implementing sleep.c, make sure you add it to the UPROGS list in the Makefile
in the top folder. This forces a compile of your code and a transfer of the executable to the xv6 file system.

4. Write a program, find, that takes, as arguments a directory and the name of a possible file. It searches the
directory’s tree and prints relative paths to files with that name. Your program should work similarly to this:

$ make qemu

...

init: starting sh

$ mkdir home

$ echo purple cows >home/waldo

$ mkdir away

$ echo mammoths >away/waldo

$ find . waldo

./home/waldo

./away/waldo

$

Here are some considerations:

• You will find it useful to look at user/ls.c to see how directories are read. Observe the use of read and
fstat.

• The file kernel/param.h defines MAXPATH, the maximum length of a file name path.

• Use recursion to drive the search process into subdirectories.

• Every directory has entries for “.” and “..”. Do not recursively search in these directories.

• Feel free to (from within xv6) make subdirectories and add files to test your find command. These file
structures will persist until you perform a make clean in the top level directory of the lab.

• You will be manipulating strings. Look at user/user.h for library functions that will help you. For
example, you’ll find strcmp and strcat allow us to compare and concatenate strings.

• Update the UPROGS variable in the Makefile to incorporate your find utility in the xv6 file system.



5. Write a simple version of the unix xargs program. This program accepts, as arguments, a unix command. It
reads, as input, individual space-delimited words. For each word read, w, it executes the unix command with
w as the final argument to the command.

Here is how we might imagine it working:

$ make qemu

...

init: starting sh

$ echo alice bob carol >friends

$ xargs echo hello <friends

hello alice

hello bob

hello carol

$

• Here, you will want to use the fork, exec, and wait commands. You should make sure that each command
is finished before the next one is started.

• Note that the file kernel/param.h defines MAXARG, the maximum number of arguments that can be passed
to exec.

• To read words from the input, you will need to write a routine that uses read to read and return one
character at a time from standard input. Be aware than when read hits the end-of-file it returns a status
of 0. Let’s agree that a printable “word” character is a character with ASCII value greater than ’ ’ and
less-than or equal to ’~’.

• When you’re finished with your xargs implementation, add it to UPROGS in the top-level Makefile and
test it out in xv6.

Notice that this is also possible:

$ make qemu

...

init: starting sh

$ mkdir home

$ echo purple cows >home/waldo

$ mkdir away

$ echo mammoths >away/waldo

$ find . waldo | xargs wc

1 2 12 ./home/waldo

1 1 9 ./away/waldo

$

6. Make sure you add sleep.c, find.c, and xargs.c in the lab2 repository, and that you commit changes to
your Makefile. Push your commits to the server for discussion and evaluation. (After a make clean, a git

status should report no changes that need to be committed.)

Thought Questions. Please think about the following questions before we meet in small groups.

1. As we add utilities, like sleep to the user directory, they are compiled to executables that start with an
underscore. Why?

2. You may observe that the length of a ”tick” does not seem to correspond to any particular length of time.
Why is the operating system interested in getting interrupted once each tick? Given that, how does not O/S
designer pick a length of time for the timer interrupt?

3. How does calling sleep impact the scheduling of other processes on the system?

4. There is no PATH environment variable on xv6. How does the shell (user/sh.c) find the commands it executes?

?


