
1

1

Processes and Wrap-up

CSCI 237: Computer Organiza6on
35th Lecture, Friday, December 6, 2024

Kelly Shaw

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

1
2

Administrative Details

¢ Lab #6 due today at 5pm
¢ “Sample” final on Glow (from S18, not all ques@ons are relevant)
¢ Extra prac@ce problems added to webpage (solns on Glow)
¢ Review session on Tues 4-5:30pm in TCL 202
§ Bring questions!

¢ Final exam
§ Wednesday, December 11, 9:30am – 11:30am (2 hours)
§ Clark Hall 105

¢ Colloquium talk on Friday at 2:35pm in Wege
§ “Systems research to address societal problems”
§ Aruna Balasubramanian, Stony Brook University

¢ WICS + Allies Hot Cocoa
§ Monday at 3pm CS Common Area

2

3

Last Time

¢ Dynamic Memory Allocation (Ch 9.9)
§ Tracking Free Blocks

§ Implicit Lists
§ Explicit Lists
§ Segregated Lists

¢Exceptional Control Flow
¢Exceptions

3
4

Today: Processes and Wrap-up

¢Exceptions
¢Processes
¢Current Computer Architecture
¢Wrap up

4

2

5

Exceptions
¢ An excep%on is a transfer of control to the OS kernel in response to

some event (i.e., change in processor state)
§ Kernel is the memory-resident part of the OS
§ Examples of events: Divide by 0, arithme6c overflow, page fault, I/O request

completes, typing Ctrl-C

User code Kernel code

Excep&on
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next

5
6

0
1
2 ...

n-1

Exception Tables

¢ Each type of event has a
unique excepOon number k

¢ k = index into excepOon table
(a.k.a. interrupt vector)

¢ Handler k is called each Ome
excepOon k occurs

Excep&on
Table

Code for
exception handler 0

Code for
excep&on handler 1

Code for
exception handler 2

Code for
excep&on handler n-1

...

Exception
numbers

6

7

Asynchronous Excep5ons (Interrupts)
¢ Caused by events external to the processor
§ Indicated by setting the processor’s interrupt pin
§ Handler returns to “next” instruction

¢ Examples:
§ Timer interrupt

§ Every few ms, an external timer chip triggers an interrupt
§ Used by the kernel to take back control from user programs

§ I/O interrupt from external device
§ Hitting Ctrl-C at the keyboard
§ Arrival of a packet from a network
§ Arrival of data from a disk

7
8

Synchronous Excep>ons
¢ Caused by events that occur as a result of executing an

instruction:
§ Traps

§ Intentional
§ Examples: system calls, breakpoint traps, special instructions
§ Returns control to “next” instruction

§ Faults
§ Unintentional but possibly recoverable
§ Examples: page faults (recoverable), protection faults

(unrecoverable), floating point exceptions
§ Either re-executes faulting (“current”) instruction or aborts

§ Aborts
§ Unintentional and unrecoverable
§ Examples: illegal instruction, parity error, machine check
§ Aborts current program

8

3

9

System Calls

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

¢ Each x86-64 system call has a unique ID number
¢ Examples:

9
10

System Call Example: Opening File
¢ User calls: open(filename, options)
¢ Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in
%rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User code Kernel code

Exception

Open file
Returns

syscall
cmp

¢ %rax contains syscall number
¢ Other arguments in %rdi,

%rsi, %rdx, %r10, %r8, %r9
¢ Return value in %rax
¢ NegaOve value is an error

corresponding to negaOve
errno

10

11

Fault Example: Page Fault
¢ User writes to memory location
¢ That portion (page) of user’s memory

is currently on disk

int a[1000];
main ()
{
 a[500] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Excep&on: page fault
Copy page from
disk to memory

Return and
reexecute movl

movl

11
12

Fault Example: Invalid Memory Reference

¢ Sends SIGSEGV signal to user process

¢ User process exits with “segmentation fault”

int a[1000];
main ()
{
 a[5000] = 13;
}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid address
movl

Signal process

12

4

13

Today: Processes and Wrap-up

¢Excep2ons
¢Processes
¢Current Computer Architecture
¢Wrap up

13
14

Processes
¢ Definition: A process is an instance of a running

program.
§ One of the most profound ideas in computer science
§ Not the same as “program” or “processor”

¢ Process provides each program with two key
abstractions:
§ Logical control flow

§ Each program seems to have exclusive use of the CPU
§ Provided by kernel mechanism called context switching

§ Private address space
§ Each program seems to have exclusive use of main memory.
§ Provided by kernel mechanism called virtual memory

CPU
Registers

Memory
Stack
Heap

Code
Data

14

15

Multiprocessing: The Illusion

¢ Computer runs many processes simultaneously
§ Applications for one or more users

§ Web browsers, email clients, editors, …
§ Background tasks

§ Monitoring network & I/O devices

CPU
Registers

Memory
Stack
Heap

Code
Data

CPU
Registers

Memory
Stack
Heap

Code
Data …

CPU
Registers

Memory
Stack
Heap

Code
Data

15
16

Multiprocessing Example

¢ Running program “top” on Mac
§ System has 123 processes, 5 of which are active
§ Identified by Process ID (PID)

16

5

17

Mul5processing: The (Tradi5onal) Reality

¢ Single processor executes mul:ple processes concurrently
§ Process execuGons interleaved (mulGtasking)
§ Address spaces managed by virtual memory system
§ Register values for non-execuGng processes saved in memory

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

17
18

Multiprocessing: The (Traditional) Reality

¢ Save current registers in memory

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

18

19

Multiprocessing: The (Traditional) Reality

¢ Schedule next process for execution

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

19
20

Multiprocessing: The (Traditional) Reality

¢ Load saved registers and switch address space (context switch)

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

20

6

21

Mul5processing: The (Modern) Reality

¢ Multicore processors
§ Multiple CPUs on single chip
§ Share main memory (and some of the

caches)
§ Each can execute a separate process

§ Scheduling of processors onto cores
done by kernel (OS)

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CPU
Registers

21
22

Concurrent Processes
¢ Each process is a logical control flow.
¢ Two processes run concurrently (are concurrent) if their

flows overlap in time
¢ Otherwise, they are sequential
¢ Examples (running on single core):
§ Concurrent: A & B, A & C
§ Sequential: B & C

Process A Process B Process C

Time

22

24

Context Switching
¢ Processes are managed by a shared chunk of memory-resident

OS code called the kernel
§ Important: the kernel is not a separate process, but rather runs as part of

some exis6ng process.

¢ Control flow passes from one process to another via a context
switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

24
25

Today: Processes and Wrap-up

¢Exceptions
¢Processes
¢Current Computer Architectures
¢Wrap up

25

7

26

Current Computer Architecture Trends

¢ Chip mul:processors
§ Small number of independent

computa6on
§ Data sharing challenging

¢ GPUs
§ Thousands of almost iden6cal

calcula6ons

¢ Accelerators
§ Specialized computa6on

hardcoded into hardware

NDSearch: Accelerating Graph-Traversal-Based Approximate Nearest Neighbor Search through Near Data Processing

NVIDIA architecture

Intel multiprocessor

26

You’ve Learned So Much!

27

28

Start by Writing a Program in C

¢ Learned how to write and debug C code
§ Ah, pointers, we love you!

¢ Learned how to use gcc, gdb, make, valgrind, address sanitizer

28
29

Compile it to an Executable
¢ Learned how to represent data
§ Twos complement
§ FloaOng point

¢ Learned how to manipulate data
§ Logical and bitwise manipulaOon
§ ArithmeOc operaOons (including shi_ing for ➗ and ✖)

¢ How to convert C code to assembly code
§ Registers/memory
§ if/else, for/while/do-while, switch
§ FuncOon calls
§ Layout of arrays and structs in memory

¢ How executables are created
§ Text segment holds instrucOons

§ Encoded in binary (Y86-64)
§ Data segments hold global data

gcc! make!

29

8

30

A Process is Created to Run Our Executable

¢ Each process has its instructions and data loaded
from the executable into a virtual address space

¢ Each process thinks it has all of memory to itself
§ Enabled by virtual memory

¢ Each process thinks it has the CPU to itself
§ Exceptional control flow allows process context

switching

Linux commands!

Memory mapped region
for shared libraries

Run7me heap (malloc)

Program text (.text)
Initialized data (.data)

Uninitialized data (.bss)

User stack

30
31

Process Starts Running (1)

¢ PC register is set with address of first instruc@on
¢ Register storing page table address is set
¢ Instruc@ons executed on pipelined datapath
§ Stalling or data forwarding pipeline used depending on processor
§ Branch predicOon used to reduce control hazards
§ Every virtual address (instrucOons and data) translated to physical address

and sent to memory hierarchy
§ Access TLB, page table, potenOally causes page fault
§ Physical addresses sent to L1/L2/DRAM

IF ID MEM WB

31

32

Process Starts Running (2)

§ Operating system invoked on traps/faults/syscalls/interrupts
§ Examples: grow heap, page fault, timer interrupt, divide by 0, read

virtual address 0
§ If instruction causes exception, flag is set and carried down pipeline until

instruction reaches WB stage
– Process state (i.e. registers, condition codes) saved into memory
– Exception table used to find starting address in kernel of exception

handler
– Handler code starts running on processor

§ Calls to dynamic memory allocator just normal execution of instructions in
library code until system calls to grow heap invoke OS

32
33

Role within CS Curriculum

CS 432
Opera&ng
Systems

CS 434
Compilers

Processes
Mem. Mgmt

CS 336
Networks

Network
Protocols

CS 331
Security

CS 134/136
Imperative

 Programming

CS 339
Distributed

Systems

CS 337
Digital Design/
Modern Arch

Machine
Code

Foundations of Computer Systems

Underlying principles for hardware,
software, and networking

Execution Model
Memory System

237

Network Prog
Concurrency

Mem. Mgmt
Efficiency

CS 338
Parallel

Processing

Processes &
Memory System

CS 333
Storage
Systems

ASM
Memory

33

9

34

Role within CS Curriculum

CS 432
Operating
Systems

CS 434
Compilers

Processes
Mem. Mgmt

CS 336
Networks

Network
Protocols

CS 331
Security

CS 134/136
Impera7ve

 Programming

CS 339
Distributed

Systems

CS 337
Digital Design/
Modern Arch

Machine
Code

Founda/ons of Computer Systems

Underlying principles for hardware,
so<ware, and networking

Execution Model
Memory System

237

Network Prog
Concurrency

Mem. Mgmt
Efficiency

CS 338
Parallel

Processing

Processes &
Memory System

CS 333
Storage
Systems

ASM
MemoryC

34
35

Final Exam

¢ Closed book, closed notes
¢ Cumula@ve with emphasis on material not tested on yet
¢ Will provide info w/ instruc@ons and registers similar to midterm
¢ Things to think about
§ Midterm, quizzes, pracOce problems, in-lecture quesOons
§ Short answer conceptual quesOons

35

36

Thank You!

¢ It’s been a challenging semester with the ongoing pandemic.
¢ This is a tough course with a lot of material to learn.
¢ Be proud of all you accomplished! You learned lots of

conceptual knowledge and lots of skills. Both will serve you well
in future classes and beyond.

¢ Thanks for being so great throughout!
¢ It’s been fun getting to know you! Please don’t be strangers.

36
37

Student Course Surveys

¢Please complete them!

To access the online evaluations, log into Glow (glow.williams.edu)
using your regular Williams username and password (the same
ones you use for your Williams email account). On your Glow

dashboard you’ll see a course called “Course Evaluations.”
Click on this and then follow the instructions you see on the screen.
If you have trouble finding the evaluation, you can ask a neighbor

for help or reach out to ir@williams.edu.

37

