Administrative Details

m Lab #6 due today at 5pm
m “Sample” final on Glow (from S18, not all questions are relevant)

Processes and Wrap-up m Extra practice problems added to webpage (solns on Glow)

m Review session on Tues 4-5:30pm in TCL 202
CSCl 237: Computer Organization = Bring questions!

35th Lecture, Friday, December 6, 2024 .
= Final exam

" Wednesday, December 11, 9:30am — 11:30am (2 hours)

Kelly Shaw
v = Clark Hall 105

m Colloquium talk on Friday at 2:35pm in Wege

= “Systems research to address societal problems”
® Aruna Balasubramanian, Stony Brook University

= WICS + Allies Hot Cocoa
® Monday at 3pm CS Common Area

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition 1 2

1 2

| |
Last Time Today: Processes and Wrap-up

= Dynamic Memory Allocation (Ch 9.9) mExceptions

® Tracking Free Blocks mProcesses

mCurrent Computer Architecture

= Explicit Lists
mWrap up

= Segregated Lists
m Exceptional Control Flow

mExceptions

Exceptions

m An exception is a transfer of control to the OS kernel in response to
some event (i.e., change in processor state)
= Kernel is the memory-resident part of the OS
= Examples of events: Divide by 0, arithmetic overflow, page fault, I/O request
completes, typing Ctrl-C

User code Kernel code
Event —— I_currentl Exception
I_next Exception processing

by exception handler
* Return to |_current
* Return to I_next
*Abort

Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor
* Indicated by setting the processor’s interrupt pin
= Handler returns to “next” instruction

m Examples:
" Timer interrupt
= Every few ms, an external timer chip triggers an interrupt
= Used by the kernel to take back control from user programs
= /0O interrupt from external device
= Hitting Ctrl-C at the keyboard
= Arrival of a packet from a network
= Arrival of data from a disk

Exception Tables

Exception
numbers

m Each type of event has a
unique exception number k

Code for
exception handler 0

¢
4 (a.k.a. interrupt vector)
—

Code for
exception handler 2

N SO

Exception /" Code for ‘
Table 3
gxeeptionihandiert = k = index into exception table

m Handler k is called each time
exception k occurs

Code for
exception handler n-1

Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:
= Traps
= Intentional
= Examples: system calls, breakpoint traps, special instructions
= Returns control to “next” instruction
® Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= Unintentional and unrecoverable

= Examples: illegal instruction, parity error, machine check

= Aborts current program

|
System Calls

m Each x86-64 system call has a unique ID number
m Examples:

Number Name Description

Fault Example: Page Fault

int a[1000];
m User writes to memory location ‘:‘a“‘ 0
m That portion (page) of user’s memory a[500] = 13;
is currently on disk }
| 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

l Exception: page fault

movl
Copy page from

disk to memor,
Return and v

reexecute mov/

|
System Call Example: Opening File

m User calls: open (filename, options)
m Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: of @5 syscall # Return value in
Ssrax

e5ds8e: 48 3d 01 fo ff ff cmp $OxFffffffffffffoOl,%rax

c::u' I'd H TS TelYy
User code Kernel code m %rax contains syscall number
m Other argumentsin $rdi,
syscall Exception %rsi, %IdX, %rlO, %18, $r9
cmp) m Returnvalue in $rax
Open file . .
RIS Negative value is an error

corresponding to negative
errno

10

Fault Example: Invalid Memory Reference

int a[1000];
main ()

{

a[5000] = 13;

}

| 80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360

User code Kernel code

l Exception: page fault

movl
Detect invalid address
—— Signal process

m Sends STGSEGYV signal to user process
m User process exits with “segmentation fault”

12

Today: Processes and Wrap-up

mExceptions

mProcesses

mCurrent Computer Architecture
mWrap up

13

Multiprocessing: The Illusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data eoe Data
Code Code Code
CPU CPU CPU

[Registers | [Registers |

m Computer runs many processes simultaneously
= Applications for one or more users
= Web browsers, email clients, editors, ...
= Background tasks
= Monitoring network & 1/0 devices

15

|
Processes

m Definition: A process is an instance of a running
program.
" One of the most profound ideas in computer science
" Not the same as “program” or “processor”

m Process provides each program with two key
. Memory
abstractions:
= Logical control flow Stack
= Each program seems to have exclusive use of the CPU %p_
= Provided by kernel mechanism called context switching C:dae
® Private address space
= Each program seems to have exclusive use of main memory. CPU
= Provided by kernel mechanism called virtual memory

14

Multiprocessing Example

X/ xterm

Processes: 123 total, 5 running, 9 stuck, 109 sleeping, 611 threads 11:47:07
Load Avg: 1,03, 1,13, 1,14 CPU usage: 3.27% user, 5,152 sys, 91,562 idle

SharedLibs: 576K resident, OB data, OB linkedit.

MemRegions: 27958 total, 1127M resident, 35M private, 434N shared.

PhysHem: 1039M wired, 1974M active, 10B2M inactive, 4076M used, 18M free,

WH: 280G vsize, 1091M framework vsize, 23075213(1) pageins, 5843367(0) pageouts,

Networks: packets: 41046228/11G in, B6083096/77G out,

Disks: 17874391/343C read, 12847373/594G written, |

PID COMMAND ZCPU TIME #TH #l0 #PORT #MREG RPRVT RSHRD RSIZE WPRVT VSIZE
99217- Microsoft Of 0,0 02:28,34 4 1 22 418 21M 244 21M E6M 7E3M

99051 usbmuxd 0,0 00:04,10 3 1 47 66 436K 216K 480K BOM 2422M
93006 iTunesHelper 0,0 00:01,23 2 1 85 78 728K 3124K 1124k 43M 24204
84286 bash 0,0 00:00,11 1 0 20 24 224K 732K 484K I7M 2378M
04285 xterm 0,0 00:00,83 1 0 32 73 BSEK 872K B9k 9728K 2382H
65939- Microsoft Ex 0,3 21:58,97 10 3 360 954 16M B5M 46M 114M 10G7M
54751 sleep 0,0 00:00,00 1 0 17 20 92K 212K 360K 9632K 2370H
54739 launchdadd 0,0 00:00,00 2 1 33 50 488K 220K 1736K 48M 2409M
54737 top 6.5 00:02,531/1 0 30 23 1416k 216K 2124K 17M 2378M
54719 automountd 0,0 00:00,02 7 1 53 64 860K 216K 2184K G3M 24134
54701 ocspd 0,0 00:00,05 4 1 Bl 54 1268K 2644K 3132k GOM 2426M
54661 Grab 0,6 00:02,75 6 3 222+ 383+ 1GM+ 26M+ 4OM+ TOM+ 26GEH+
54659 cookied 0,0 00:00,15 2 1 40 Bl 3316K 224K 4088K 424 2411H
G218 meuarkor a0 0Nt R7 4 1 [T TFROGK TA1OK ARM ASM 0420M

= Running program “top” on Mac
= System has 123 processes, 5 of which are active
= |dentified by Process ID (PID)

16

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap : Heap Heap
Data : Data wee Data
Code : Code Code
Saved : Saved Saved
registers registers registers
[cpu |
: :

= Single processor executes multiple processes concurrently
" Process executions interleaved (multitasking)
" Address spaces managed by virtual memory system
" Register values for non-executing processes saved in memory

Multiprocessing: The (Traditional) Reality

Memory
: Stack Stack Stack
i | _Heap | : Heap Heap
: | Data : Data e Data
: Code : Code Code
: [saved | : | Saved
. | registers | : registers registers
: ‘”\ -
] CPU
:

m Save current registers in memory

17

Multiprocessing: The (Traditional) Reality

Memory
Stack [Cstack | : Stack
Heap : Heap : Heap
Data : Data F—— Data
Code : Code : Code
Saved | 5 | Saved | :
registers . Lregisters : registers
CPU |

m Schedule next process for execution

18

Multiprocessing: The (Traditional) Reality

Memory
Stack ;| Stack | : Stack
Heap i | _Heap | : Heap
Data : Data . oo Data
Code : Code : Code
| Saved | Saved
U
CPU

m Load saved registers and switch address space (context switch)

19

20

Multiprocessing: The (Modern) Reality

Memory
Stack | :: [_stack | : Stack
Heap 52 Heap : Heap
Data] : Data TS Data
Code . Code : Code
Saved | :: [Saved | : Saved
registers | :: | registers | : registers
] cPU 1 cpu m Multicore processors
‘| [Registers | ‘| [Registers | * = Multiple CPUs on single chip
: v = Share main memory (and some of the

caches)
" Each can execute a separate process

= Scheduling of processors onto cores
done by kernel (OS)

21

|
Context Switching

m Processes are managed by a shared chunk of memory-resident
OS code called the kernel

® Important: the kernel is not a separate process, but rather runs as part of
some existing process.

m Control flow passes from one process to another via a context

switch

1

Process A 1 Process B

1

1

: user code

1

kernel code } context switch

Time user code

kernel code } context switch

user code

24

Concurrent Processes

m Each process is a logical control flow.

m Two processes run concurrently (are concurrent) if their
flows overlap in time

m Otherwise, they are sequential

m Examples (running on single core):
" Concurrent: A& B,A&C
" Sequential: B& C

Process A Process B Process C

Time |

22

Today: Processes and Wrap-up

|

|

m Current Computer Architectures
mWrap up

25

Current Computer Architecture Trends

Memory Contraller

= Chip multiprocessors

= Small number of independent i
computation

= Data sharing challenging

o] Core Core
P

Intel multiprocessor

m GPUs

® Thousands of almost identical
calculations

NVIDIA architecture

m Accelerators

Shared L3 Cache it I

Flash o

= Specialized computation

Flash

hardcoded into hardware sin

Query
@ ey = Allncatur
%

v9d4

rlasn o

SiN

Internal Bus

”“" SN [siN | sin

%,
® &
It R | U
e ;...;le.meucm
SearSSD

(a)

NDSearch: ing Graph-Tr

Nearest Neighbor Search through Near Data Processing

Start by Writing a Program in C

e kshaw li

File Edit Options Buffers Tools C Help 8

#include <stdio.h>

void printMessage(char #kstrings, int num)
{

for(int i = @; i < num; i++){
printf("%s ", strings[il);

}
printflf*\n");

int main(int argc, char sargv[])
char xarray[] = {"Have", "a", "safe", "break!"};
printMessage(array, 4);

return @;

-UUU:----F1 hello.c All L9 (C/*1 Abbrev) =——mmmmmmmmmmm e
m Learned how to write and debug C code
= Ah, pointers, we love you! @

m Learned how to use gcc, gdb, make, valgrind, address sanitizer

Compile it to an Executable
m Learned how to represent data
® Twos complement
® Floating point
m Learned how to manipulate data
" Logical and bitwise manipulation
= Arithmetic operations (including shifting for
m How to convert C code to assembly code
= Registers/memory
= if/else, for/while/do-while, switch
= Function calls
" Layout of arrays and structs in memory
m How executables are created

= Text segment holds instructions
= Encoded in binary (Y86-64)

=_Data cogmontc hald glahal data

< and X)

gec! make!

29

A Process is Created to Run Our Executable

kshaw — ssh -| kshaw limia.cs.williams.edu — 80x24
-> 1s
hellox hello.c hello.c~
—> ./hellol]

Linux commands!

m Each process has its instructions and data loaded
from the executable into a virtual address space

m Each process thinks it has all of memory to itself
® Enabled by virtual memory

m Each process thinks it has the CPU to itself

= Exceptional control flow allows process context
switching

User stack

¥

Memory mapped region
for shared libraries

t

Runtime heap (malloc)

Uninitialized data (.bss)
Initialized data (.data)
Program text (.text)

30

Process Starts Running (2)

[ece kshaw — ssh -I kshaw limia.cs.williams.edu — 80x24
-> hello

Have a safe break!

->

= QOperating system invoked on traps/faults/syscalls/interrupts

= Examples: grow heap, page fault, timer interrupt, divide by 0, read
virtual address 0

= If instruction causes exception, flag is set and carried down pipeline until
instruction reaches WB stage

— Process state (i.e. registers, condition codes) saved into memory

— Exception table used to find starting address in kernel of exception
handler

— Handler code starts running on processor

= Calls to dynamic memory allocator just normal execution of instructions in
library code until system calls to grow heap invoke OS

32

Process Starts Running (1) >

[ece kshaw — ssh | kshaw limia.cs williams.edu — 80x24
-> hello

Have a safe break!

->

m PC register is set with address of first instruction
m Register storing page table address is set

m Instructions executed on pipelined datapath
= Stalling or data forwarding pipeline used depending on processor
® Branch prediction used to reduce control hazards

" Every virtual address (instructions and data) translated to physical address
and sent to memory hierarchy

= Access TLB, page table, potentially causes page fault
= Physical addresses sent to L1/L2/DRAM

31

Role within CS Curriculum

Disct?iz‘:?ed SES ® S pC:r:fl:n
Networks| Compilers| Security .
S Processi

t ~ e
Network Prog Network Processes Machine Execution Model ASM Mem. Mgmt Processes &
Concurrency Protocols Mem. Mgmt Code ~ Memory System , Memory “ Efficiency ~” Memory System

Foundations of Computer Systems

Underlying principles for hardware
software, and networking

CS 134/136
Imperative
Programming

33

Role within CS Curriculum

.6‘339 Cs336 CS432 cs331 C5333 Cs338
Distributed N Ks Operating| n Storage Parallel
Systems BT Systems Security Systems | [Processing
~ ~N N 7~ g

f x
ine Execution Model ASM Mem. Mgmt Processes &
Mei System , Memory - Efficiency =~ Memory System|

Network Prog Network Processes
Concurrency Protocols . Mem. Mgmt

Foundations of Computer Systems

Underlying principles for hardware,
software, and networking

CS 134/136
Imperative
Programming

34

|
Thank You!

u It's been a challenging semester with the ongoing pandemic.
m This is a tough course with a lot of material to learn.

m Be proud of all you accomplished! You learned lots of

conceptual knowledge and lots of skills. Both will serve you well
in future classes and beyond.

m Thanks for being so great throughout!
u It's been fun getting to know you! Please don’t be strangers.

/

7/\/

36

Final Exam

m Closed book, closed notes
m Cumulative with emphasis on material not tested on yet
m Will provide info w/ instructions and registers similar to midterm

m Things to think about
= Midterm, quizzes, practice problems, in-lecture questions
= Short answer conceptual questions

35

Student Course Surveys

mPlease complete them!

To access the online evaluations, log into Glow (glow.williams.edu)
using your regular Williams username and password (the same
ones you use for your Williams email account). On your Glow
dashboard you'll see a course called “Course Evaluations.”
Click on this and then follow the instructions you see on the screen.
If you have trouble finding the evaluation, you can ask a neighbor
for help or reach out to ir@williams.edu.

37

