
1

1

Processes and Threads

CSCI 237: Computer Organization
34th Lecture, Monday, December 1, 2025

Kelly Shaw

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

1
2

Administrative Details

¢ Lab #6 due Friday at 5pm
¢ Read CSAPP 12.1—12.4
¢ Review session
§ Thursday or Friday of next week?

¢ Colloquium tomorrow at 2:35pm
§ Olivia Weng, UCSD
§ Codesigning Hardware and Software for Efficient AI

2

3

Last Time

¢ Dynamic Memory Allocation (Ch 9.9)
§ Tracking Free Blocks

§ Explicit Lists
§ Segregated Lists

3
4

Today: Processes and Threads

¢Processes
¢Threads

4

2

5

Processes
¢ Definition: A process is an instance of a running

program.
§ One of the most profound ideas in computer science
§ Not the same as “program” or “processor”

¢ Process provides each program with two key
abstractions:
§ Logical control flow

§ Each program seems to have exclusive use of the CPU
§ Provided by kernel mechanism called context switching

§ Private address space
§ Each program seems to have exclusive use of main memory.
§ Provided by kernel mechanism called virtual memory

CPU
Registers

Memory
Stack
Heap

Code
Data

5
6

Multiprocessing: The Illusion

¢ Computer runs many processes simultaneously
§ Applications for one or more users

§ Web browsers, email clients, editors, …
§ Background tasks

§ Monitoring network & I/O devices

CPU
Registers

Memory
Stack
Heap

Code
Data

CPU
Registers

Memory
Stack
Heap

Code
Data …

CPU
Registers

Memory
Stack
Heap

Code
Data

6

7

Multiprocessing Example

¢ Running program “top” on Mac
§ System has 123 processes, 5 of which are active
§ Identified by Process ID (PID)

7
8

Multiprocessing: The (Traditional) Reality

¢ Single processor executes multiple processes concurrently
§ Process executions interleaved (multitasking)
§ Address spaces managed by virtual memory system
§ Register values for non-executing processes saved in memory

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

8

3

9

Multiprocessing: The (Traditional) Reality

¢ Save current registers in memory

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

9
10

Multiprocessing: The (Traditional) Reality

¢ Schedule next process for execution

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

10

11

Multiprocessing: The (Traditional) Reality

¢ Load saved registers and switch address space (context switch)

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

11
12

Multiprocessing: The (Modern) Reality

¢ Multicore processors
§ Multiple CPUs on single chip
§ Share main memory (and some of the

caches)
§ Each can execute a separate process

§ Scheduling of processors onto cores
done by kernel (OS)

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CPU
Registers

12

4

13

Processes Can Create Other Processes
¢ A process can create another process.
§ The created process is a child process of its parent.

¢ The child process can
§ continue to execute the original executable that

created it (with a copy of the parent’s resources) or
§ start running a new executable

¢ The parent and child process do not share
anything, but the parent process will be notified
when the child process completes.

¢ A parent process can wait for a child process to
complete before it continues its execution.

P0

P1

P3 P4

P2

Process hierarchy

13
14

Concurrent Processes
¢ Each process is a logical control flow.
¢ Two processes run concurrently (are concurrent) if their

flows overlap in time
¢ Otherwise, they are sequential
¢ Examples (running on single core):
§ Concurrent: A & B, A & C
§ Sequential: B & C

Process A Process B Process C

Time

14

15

User View of Concurrent Processes
¢ Control flows for concurrent processes are physically disjoint

in time

¢ However, we can think of concurrent processes as running in
parallel with each other

Time

Process A Process B Process C

15
16

Context Switching
¢ Processes are managed by a shared chunk of memory-resident

OS code called the kernel
§ Important: the kernel is not a separate process, but rather runs as part of

some existing process.

¢ Control flow passes from one process to another via a context
switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

16

5

17

Traditional View of a Process

¢ Process = process context + code, data, and stack

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and stack

Stack
SP

Shared libraries

Run-time heap

0

Read/write data
Read-only code/dataPC

brk

Process context

Kernel context:
 VM structures
 Descriptor table
 brk pointer

17
18

Alternate View of a Process

¢ Process = thread + code, data, and kernel context

Shared libraries

Run-time heap

0

Read/write dataThread context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and kernel context

Read-only code/data

Stack
SP

PC

brk

Thread (main thread)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

18

19

A Process With Multiple Threads
¢ Multiple threads can be associated with a process

§ Each thread has its own logical control flow
§ Each thread shares the same code, data, and kernel context
§ Each thread has its own stack for local variables

§ but not protected from other threads
§ Each thread has its own thread id (TID)

Thread 1 context:
 Data registers
 Condition codes
 SP1

 PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/data

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Thread 2 context:
 Data registers
 Condition codes
 SP2

 PC2

stack 2

Thread 2 (peer thread)

19
20

Logical View of Threads

¢ Threads associated with process form a pool of “peers”
§ Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context

20

6

21

Concurrent Threads

¢ Two threads are concurrent if their flows “overlap” in time
¢ Otherwise, they are sequential w.r.t. each other

¢ Examples:
§ Concurrent: A & B, A & C
§ Sequential: B & C

Time

Thread A Thread B Thread C

21
22

Concurrent Thread Execution

¢ Single Core Processor
§ Simulate parallelism by time

slicing

¢ Multi-Core Processor
§ Can have true parallelism

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

22

23

Threads vs. Processes
¢ How threads and processes are similar
§ Each has its own logical control flow
§ Each can run concurrently with others (possibly on different cores)
§ Each is context switched

¢ How threads and processes are different
§ Threads share all code and data (except local stacks)

§ Processes do not
§ Threads are somewhat less expensive than processes

§ Process control (creating and reaping) twice as expensive as thread control
§ Linux numbers:

– ~20K cycles to create and reap a process
– ~10K cycles (or less) to create and reap a thread

23
24

Posix Threads (Pthreads) Interface
¢ Pthreads: Standard interface for ~60 functions that manipulate

threads from C programs
§ Creating and reaping threads

§ pthread_create()

§ pthread_join()

§ Determining your thread ID
§ pthread_self()

§ Terminating threads
§ pthread_cancel()

§ pthread_exit()

§ exit() [terminates all threads]
§ return [terminates current thread]

§ Synchronizing access to shared variables
§ pthread_mutex_init
§ pthread_mutex_[un]lock

24

7

25

void *thread(void *vargp) /* thread routine */
{
 printf("Hello, world!\n");

return NULL;
}

The Pthreads "hello, world" Program
/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main(int argc, char** argv)
{
 pthread_t tid;
 pthread_create(&tid, NULL, thread, NULL);
 pthread_join(tid, NULL);

return 0;
}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

Return value
(void **p)

hello.c

Thread ID

Thread routine

hello.c

25
26

Execution of Threaded “hello, world”
Main thread

Peer thread

return NULL;Main thread waits for
peer thread to terminate

exit()
Terminates

main thread and
any peer threads

call pthread_create()

call pthread_join()

pthread_join()
returns

printf()

Peer thread
terminates

pthread_create()
returns

26

27

Basic Pthreads program setup

● #include <pthread.h>
● When compiling, link in pthreads library

gcc –g –o hello hello.c –lpthread

● When running, just run as normal
./hello

27
28

Issues with Threaded Programs

● When threads concurrently read/write shared memory,
program behavior is undefined (called a data race)
○ Two threads write to the same variable; which one should win?

● Thread schedule is non-deterministic
○ Behavior changes when re-run program

● Compiler/hardware instruction reordering
● Multi-word operations are not atomic
● All functions called by a thread must be thread-safe

28

8

29

Question: What is the outcome of this
code?

Thread 1

x=x+1;

print x;

Thread 2

x=x+1;

print x;

x = 0

29
30

Terminology

● Race condition: output of a concurrent program depends on the
order of operations between threads

● Mutual exclusion: only one thread does a particular thing at a
time
● Critical section: piece of code that only one thread can execute at once

● Synchronization primitive: construct used to coordinate use of
shared data in threaded programs

● Lock: prevent someone from doing something
● Lock before entering critical section, before accessing shared data
● Unlock when leaving, after done accessing shared data
● Wait if locked (all synchronization involves waiting!)

30

31

int num_threads;
int val;

void *Hello(void *rank)

{
 int tmp = val+1;

 val = tmp;
 return NULL;

}

int main(int argc, char *argv[])
{

 long pthread;
 num_threads = 4;

 val = 0;
 pthread_t ids[num_threads];

 for(long i = 0; i < num_threads; i++){

 pthread_create(&ids[i], NULL, Hello,
 (void*)i);
 }
 for(int i = 0; i < num_threads; i++){

 pthread_join(ids[i], NULL);
 }

 printf("Value of val %d\n", val);
 return 0;

}

31
32

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int num_threads;

int val;

void *Hello(void *rank)

{

 pthread_mutex_lock(&mutex);
 int tmp = val+1;

 val = tmp;

 pthread_mutex_unlock(&mutex);

 return NULL;
}

int main(int argc, char *argv[])
{

 long pthread;

 num_threads = 4;
 val = 0;

 pthread_t ids[num_threads];

 pthread_mutex_init(&mutex, NULL);

 for(long i = 0; i < num_threads; i++){

 pthread_create(&ids[i], NULL,
 Hello, (void*)i);

 }

 for(int i = 0; i < num_threads; i++){
 pthread_join(ids[i], NULL);

 }

 printf("Value of val %d\n", val);
 return 0;

}

32

9

33

Pros and Cons of Threaded Programs

¢ + Easy to share data structures between threads
§ e.g., logging information, file cache

¢ + Threads are more efficient than processes
§ Context switches are smaller, threads are more lightweight

¢ – Unintentional sharing can introduce subtle and hard-to-
reproduce errors!
§ The ease with which data can be shared is both the greatest

strength and the greatest weakness of threads
§ Hard to know which data shared & which private
§ Hard to detect by testing

§ Probability of bad race outcome very low
§ But nonzero!

33

