| |
Administrative Details

m Lab #6 due Friday at 5pm
= Read CSAPP 12.1—12.4

m Review session
® Thursday or Friday of next week?

Processes and Threads

CSCl 237: Computer Organization

m Colloquium tomorrow at 2:35pm
34th Lecture, Monday, December 1, 2025

= Olivia Weng, UCSD

® Codesigning Hardware and Software for Efficient Al

Kelly Shaw
1 2
| |
Last Time Today: Processes and Threads
m Dynamic Memory Allocation (Ch 9.9) mProcesses

® Tracking Free Blocks s Threads

= Explicit Lists
= Segregated Lists

T |
Processes

m Definition: A process is an instance of a running
program.
" One of the most profound ideas in computer science
" Not the same as “program” or “processor”

m Process provides each program with two key

abstractions: Memory
®= Logical control flow Stack

= Each program seems to have exclusive use of the CPU ';2‘-::

= Provided by kernel mechanism called context switching Code

® Private address space

= Each program seems to have exclusive use of main memory. CPU
= Provided by kernel mechanism called virtual memory

Multiprocessing Example

X/ xterm

Processes: 123 total, 5 running, 9 stuck, 109 sleeping, 611 threads 11:47:07
Load Avg: 1,03, 1,13, 1,14 CPU usage: 3.27% user, 5,152 sys, 91,56% idle

SharedLibs: 576K resident, OB data, OB linkedit,

MemRegions: 27958 total, 1127M resident, 35M private, 434M shared,

PhysMem: 1033M wired, 1974M active, 1062M inactive, 4076M used, 18M free,

WM: 280G wsize, 1091M framework vsize, 23075213(1) pageins, 5843367(0) pageouts,

Networks: packets: 41046228/11C in, 66083096/77C out,

Disks: 17874391/343GC read, 12847373/534G written, |

PID COMMAND #CPU TIME #TH #lJ0 #PORT #MREG RPRVT RSHRD RSIZE VPRVT YSIZE
99217- Microsoft Of 0,0 02:28,34 4 1 202 418 21M 24M 21M e6M 7B3M

99051 usbmuxd 0,0 00:04,10 3 1 47 66 436K 216K 480K BOM 2422M
93006 iTunesHelper 0,0 00:01,23 2 1 85 78 728K 3124K 1124K 43H 2429M
84286 bash 0,0 00:00,11 1 0 20 24 224k 732K 484K 17M 2378M
84285 xterm 0,0 00:00,83 1 0 32 73 BSEK 872K B92K 9728K 2382M
65933- Microsoft Ex 0,3 21:58,97 10 3 360 954 16M BSM 46M 114M 10G7M
54751 sleep 0,0 00:00,00 1 0 17 20 92K 212K 360K 9632K 2370M
54739 launchdadd 0,0 00:00,00 2 1 33 50 488K 220K 1736K 484 2409M
54737 top 6.5 00:02,531/1 0 30 23 1416K 216K 2124K 17M 2378
54719 automountd 0,0 00:00,02 7 1 53 B4 BBOK 216K 2184K 53M 2413M
54701 ocspd 0,0 00:00,05 4 1 B1 54 1268K 2644K 3132K S0M 2426M
54661 Grab 0,6 00:02,75 & 3 222+ 389+ 1GM+ 2BM+ 4OM+ TSM+ 2GGEM+
54659 cookied 0,0 00:00,15 2 1 40 B1 3316K 224K 4088K 42M 2411M
G218 meuarkor A0 anen R7 4 1 5 At TROGK TA1OK ARM ASM D4Z9M

= Running program “top” on Mac
= System has 123 processes, 5 of which are active
= |dentified by Process ID (PID)

Multiprocessing: The Illusion

Memory Memory Memory
Stack Stack Stack
Heap |__Heap Heap
Data Data Data
Code Code Code
CPU CPU CPU

[Registers | [Registers |

m Computer runs many processes simultaneously
= Applications for one or more users
= Web browsers, email clients, editors, ...
= Background tasks
= Monitoring network & 1/0 devices

Multiprocessing: The (Traditional) Reality

Memory
Stack : Stack Stack
Heap : Heap Heap
Data : Data .on Data
: Code : Code Code
| Saved | : Saved |

= Single processor executes multiple processes concurrently
= Process executions interleaved (multitasking)
= Address spaces managed by virtual memory system
= Register values for non-executing processes saved in memory

Multiprocessing: The (Traditional) Reality

Memory

Stack Stack Stack
Heap : Heap Heap
Data : Data wee Data
Code : Code Code
Saved : Saved Saved
registers registers registers
il

| cPu |

: :

m Save current registers in memory

Multiprocessing: The (Traditional) Reality

Memory
Stack : | _Stack | : Stack
Heap i | _Heap | : Heap
Data : Data Y Data
Code : Code : Code
Saved | : | Saved
registers . |_registers registers
CPU

m Schedule next process for execution

10

Multiprocessing: The (Modern) Reality

9
Multiprocessing: The (Traditional) Reality
........ Memory
Stack [Cstack | : Stack
Heap | : | Heap | : Heap
Data : Data F—— Data
Code : Code : Code
Saved | 5 | Saved | : Saved
registers registers | :
— 1
1 CPU |
|
m Load saved registers and switch address space (context switch)
11

Memory
: [stack | :: [Stack | : Stack
: |__Heap i | Heap : Heap
: Data 5 Data . oo Data
: Code i Code : Code
f | Saved | Saved
I cpu |l cpu | = Multicore processors
‘| [Registers] | :| [Registers | = Multiple CPUs on single chip
: = Share main memory (and some of the

caches)
" Each can execute a separate process

= Scheduling of processors onto cores

done by kernel (OS)

12

Processes Can Create Other Processes

m A process can create another process.
" The created process is a child process of its parent.

m The child process can @
= continue to execute the original executable that
created it (with a copy of the parent’s resources) or @
® start running a new executable

m The parent and child process do not share @

anything, but the parent process will be notified
when the child process completes.

Process hierarchy

m A parent process can wait for a child process to
complete before it continues its execution.

13

User View of Concurrent Processes

m Control flows for concurrent processes are physically disjoint
in time

m However, we can think of concurrent processes as running in
parallel with each other

Process A Process B Process C

Time

15

Concurrent Processes

m Each process is a logical control flow.

m Two processes run concurrently (are concurrent) if their
flows overlap in time

m Otherwise, they are sequential

m Examples (running on single core):
" Concurrent: A& B,A&C
" Sequential: B& C

Process A Process B Process C

Time |

14

|
Context Switching

m Processes are managed by a shared chunk of memory-resident
OS code called the kernel

" Important: the kernel is not a separate process, but rather runs as part of
some existing process.

m Control flow passes from one process to another via a context

switch

1

Process A I Process B

1

1

1

1 user code

1

kernel code } context switch

Time user code

kernel code } context switch

user code

16

|
Traditional View of a Process

m Process = process context + code, data, and stack

Process context Code, data, and stack
______________________ .
Program context: Stack
q Sp
Data registers
Condition codes Shared libraries
Stack pointer (SP)
brk

Program counter (PC) Run-time heap

Read/write data
PC —*| Read-only code/data

Kernel context:
VM structures
Descriptor table
brk pointer

17

A Process With Multiple Threads

= Multiple threads can be associated with a process
= Each thread has its own logical control flow
= Each thread shares the same code, data, and kernel context
= Each thread has its own stack for local variables
= but not protected from other threads
= Each thread has its own thread id (TID)

Thread 1 (main thread) Thread 2 (peer thread) Shared code and data
shared libraries
‘ stack 1 ‘ ‘ stack 2 ‘
L run-timehean |
Thread 1 context: Thread 2 context: read/write data
Data registers Data registers read-only code/data
Condition codes Condition codes 0
SP; SP,
PC, pC Kernel context:
2 VM structures

Descriptor table
brk pointer

19

|
Alternate View of a Process

m Process = thread + code, data, and kernel context

Thread (main thread) Code, data, and kernel context

Shared libraries

brk Run-time heap

Read/write data
PC —*| Read-only code/data

1

1

1

1

1

: Thread context:
1 Data registers
1

1

1

1

1

1

1

Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

18

Logical View of Threads

m Threads associated with process form a pool of “peers”
= Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

6 8 o ¢
e ¢

FTO©
® @ ! e

®

5

1

1

1

1

1

1

1 shared code, data
' and kernel context
1

1

1

I

1

1

20

|
Concurrent Threads

m Two threads are concurrent if their flows “overlap” in time
m Otherwise, they are sequential w.r.t. each other

m Examples:
= Concurrent: A& B,A&C
= Sequential: B& C

Thread A Thread B Thread C

Time [

21

Threads vs. Processes

m How threads and processes are similar
® Each has its own logical control flow

® Each can run concurrently with others (possibly on different cores)
® Each is context switched

m How threads and processes are different
" Threads share all code and data (except local stacks)
= Processes do not
" Threads are somewhat less expensive than processes
= Process control (creating and reaping) twice as expensive as thread control
= Linux numbers:
— ~20K cycles to create and reap a process
— ~10K cycles (or less) to create and reap a thread

23

Concurrent Thread Execution

m Single Core Processor m Multi-Core Processor
= Simulate parallelism by time ® Can have true parallelism
slicing
Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

22

Posix Threads (Pthreads) Interface

m Pthreads: Standard interface for ~60 functions that manipulate
threads from C programs
" Creating and reaping threads
= pthread create()
= pthread join()
= Determining your thread ID
= pthread self ()
® Terminating threads
= pthread cancel ()
* pthread exit()
» exit () [terminates all threads]
= return [terminates current thread]
= Synchronizing access to shared variables
* pthread mutex init
= pthread mutex_ [un]lock

24

| |
The Pthreads "hello, world" Program Execution of Threaded “hello, world”

5 |

* hello.c - Pthreads "hello, world" program

*/ Thread ID Thread attributes
#include "csapp.h" - r call pth.
void *thread(void *vargp) ; (usually NU’.L) pt! read_create()
pthread create() | e Peer thread

int main (int argc, char** zgX¥gv) returns o T—

{ Thread routine callpthread join() { e .
pthread_t tid; printf()
pthread_create (&tid, NULL, thfead, NULL); Main thread waits for return NULL;
e e, [Thread arguments peer thread to terminate e Peer thread

} retuEn 07 \ I\ wid*) || | e terminates

hello.c pthread join() |
returns
Return value exit()
void *thread(void *vargp) /* thread routine */ (Void **p) Terminates

{ £ Al 1d!\ main thread and
int "H ,] "
Ziﬁm‘ml-° o " any peer threads

hello.c

25 26

|
Basic Pthreads program setup Issues with Threaded Programs

. #include <pthread.h> « When threads concurrently read/write shared memory,
program behavior is undefined (called a data race)
o Two threads write to the same variable; which one should win?

« Thread schedule is non-deterministic
o Behavior changes when re-run program

« When compiling, link in pthreads library
gcc —g -0 hello hello.c —-lpthread
« When running, just run as normal

-/hello « Compiler/hardware instruction reordering

« Multi-word operations are not atomic
« All functions called by a thread must be thread-safe

27 28

Question: What is the outcome of this

code?

x=0
Thread 1 Thread 2
x=x+1; x=x+1;
print x; print x;

29

29

int num_threads; int main(int argc, char *argv[])
int val; {

long pthread;

void *Hello(void *rank)
{ val = 0;

num_threads = 4;

int tmp = val+l; pthread_t ids[num_threads];

val = tmp;
return NULL; for(long i = 0; i < num_threads; i++){
} pthread_create(&ids[i], NULL, Hello,
(void*)i);
}
for(int i = 0; i < num_threads; i++)({

pthread_join(ids[i], NULL);
}
printf ("Value of val %d\n", val);

return 0;

31

|
Terminology

« Race condition: output of a concurrent program depends on the
order of operations between threads

o Mutual exclusion: only one thread does a particular thing at a
time
o Critical section: piece of code that only one thread can execute at once
o Synchronization primitive: construct used to coordinate use of
shared data in threaded programs
o Lock: prevent someone from doing something
o Lock before entering critical section, before accessing shared data
e Unlock when leaving, after done accessing shared data
o Wait if locked (all synchronization involves waiting!)

30

pthread mutex_t mutex = PTHREAD_MUTEX INITIALIZER;
int num_threads;

int val;

void *Hello(void *rank) int main(int argc, char *argv[])

{ {

pthread_mutex_ lock (&mutex) ; long pthread;

int tmp = val+l; num_threads = 4;
val = tmp; val = 0;
pthread_mutex_unlock (&mutex) ; pthread_t ids[num_threads];

pthread mutex_ init(&mutex, NULL);
return NULL;

} for(long i = 0; i < num_threads; i++){
pthread_create(&ids[i], NULL,

Hello, (void*)i);

}

for(int i = 0; i < num_threads; i++)({
pthread_join(ids[i], NULL);

}

printf ("Value of val %d\n", val);

return 0;

32

e ——
Pros and Cons of Threaded Programs

m + Easy to share data structures between threads
" e.g., logging information, file cache
m + Threads are more efficient than processes
= Context switches are smaller, threads are more lightweight

m — Unintentional sharing can introduce subtle and hard-to-
reproduce errors!

® The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads
= Hard to know which data shared & which private
= Hard to detect by testing
= Probability of bad race outcome very low
= But nonzero!

33

